Exact Mass: 413.279061

Exact Mass Matches: 413.279061

Found 229 metabolites which its exact mass value is equals to given mass value 413.279061, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Norbuprenorphine

(1S,2R,6S,14R,15R,16R)-16-[(2S)-2-hydroxy-3,3-dimethylbutan-2-yl]-15-methoxy-13-oxa-3-azahexacyclo[13.2.2.1²,⁸.0¹,⁶.0⁶,¹⁴.0⁷,¹²]icosa-7,9,11-trien-11-ol

C25H35NO4 (413.25659500000006)


Norbuprenorphine is the primary active metabolite of buprenorphine. Norbuprenorphine acts as a μ-opioid, δ-opioid, and nociceptin receptor full agonist, as well as a κ-opioid receptor partial agonist. Norbuprenorphine crosses the blood-brain-barrier similarly to buprenorphine and likely contributes to its effects. It was observed that Intravenous administration of norbuprenorphine at 1 to 3 mg/kg decreased respiratory rate, whereas buprenorphine had no effect up to 3 mg/kg in rats. (Wikipedia) D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids

   

3-Hydroxy-9-hexadecenoylcarnitine

(3S)-3-{[(9Z)-3-hydroxyhexadec-9-enoyl]oxy}-4-(trimethylazaniumyl)butanoic acid

C23H43NO5 (413.31410680000005)


3-Hydroxy-9-hexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (9Z)-3-hydroxyhexadec-9-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxy-9-hexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-hydroxy-9-hexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 3-hydroxy-9-hexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane.  Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Docosahexaenoyl GABA

4-{[(7Z,10Z,13Z,16Z,19Z)-1-hydroxydocosa-4,7,10,13,16,19-hexaen-1-ylidene]amino}butanoic acid

C26H39NO3 (413.29297840000004)


N-Docosahexaenoyl GABA is considered to be practically insoluble (in water) and acidic. N-Docosahexaenoyl GABA is a fatty amide lipid molecule

   

3-Hydroxypalmitoleoylcarnitine

3-{[(9Z)-3-hydroxyhexadec-9-enoyl]oxy}-4-(trimethylammonio)butanoic acid

C23H43NO5 (413.31410680000005)


3-Hydroxypalmitoleoylcarnitine is an acylcarnitine. More specifically, it is an 3-hydroxypalmitoleoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxypalmitoleoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-Hydroxypalmitoleoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 3-Hydroxypalmitoleoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(10Z)-7-Hydroxyhexadecenoylcarnitine

3-[(7-hydroxyhexadec-10-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.31410680000005)


(10Z)-7-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (10Z)-7-hydroxyhexadec-10-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (10Z)-7-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (10Z)-7-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (10Z)-7-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(3Z)-9-Hydroxyhexadecenoylcarnitine

3-[(9-hydroxyhexadec-3-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.31410680000005)


(3Z)-9-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (3Z)-9-hydroxyhexadec-3-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (3Z)-9-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (3Z)-9-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (3Z)-9-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(6E)-9-Hydroxyhexadecenoylcarnitine

3-[(9-hydroxyhexadec-6-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.31410680000005)


(6E)-9-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (6E)-9-hydroxyhexadec-6-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (6E)-9-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (6E)-9-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (6E)-9-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(10Z)-12-Hydroxyhexadecenoylcarnitine

3-[(12-hydroxyhexadec-10-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.31410680000005)


(10Z)-12-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (10Z)-12-hydroxyhexadec-10-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (10Z)-12-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (10Z)-12-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (10Z)-12-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(9Z)-12-Hydroxyhexadecenoylcarnitine

3-[(12-hydroxyhexadec-9-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.31410680000005)


(9Z)-12-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (9Z)-12-hydroxyhexadec-9-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (9Z)-12-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (9Z)-12-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (9Z)-12-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(2E)-4-Hydroxyhexadecenoylcarnitine

3-[(4-hydroxyhexadec-2-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.31410680000005)


(2E)-4-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (2E)-4-hydroxyhexadec-2-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-4-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (2E)-4-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (2E)-4-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(8Z)-10-Hydroxyhexadecenoylcarnitine

3-[(10-hydroxyhexadec-8-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.31410680000005)


(8Z)-10-Hydroxyhexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (8Z)-10-hydroxyhexadec-8-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (8Z)-10-Hydroxyhexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (8Z)-10-Hydroxyhexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (8Z)-10-Hydroxyhexadecenoylcarnitine is elevated in the blood or plasma of individuals with diastolic heart failure (PMID: 27473038) and systolic heart failure (PMID: 27473038). It is also decreased in the blood or plasma of individuals with intracerebral hemorrhage (PMID: 29265114), psoriasis (PMID: 33391503) and coronary artery disease (PMID: 20173117). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-Oxohexadecanoylcarnitine

3-[(3-oxohexadecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.31410680000005)


3-Oxohexadecanoylcarnitine is an acylcarnitine. More specifically, it is an 3-oxohexadecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Oxohexadecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-Oxohexadecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Stearoyl Glutamic acid

2-[(1-Hydroxyoctadecylidene)amino]pentanedioate

C23H43NO5 (413.31410680000005)


N-stearoyl glutamic acid, also known as N-stearoyl glutamate belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Stearic acid amide of Glutamic acid. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Stearoyl Glutamic acid is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Stearoyl Glutamic acid is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

o-Desmethyl ranolazine

N-(2,6-dimethylphenyl)-2-{4-[2-hydroxy-3-(2-hydroxyphenoxy)propyl]piperazin-1-yl}acetamide

C23H31N3O4 (413.23144460000003)


   

Dihydroetorphine

16-(2-hydroxypentan-2-yl)-15-methoxy-3-methyl-13-oxa-3-azahexacyclo[13.2.2.1^{2,8}.0^{1,6}.0^{6,14}.0^{7,12}]icosa-7,9,11-trien-11-ol

C25H35NO4 (413.25659500000006)


   
   

Lasofoxifene

6-Phenyl-5-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-5,6,7,8-tetrahydro-naphthalen-2-ol

C28H31NO2 (413.2354666)


   

3-oxocholest-4-en-26-oate

(6R)-6-[(1S,2R,10S,11S,14R,15R)-2,15-dimethyl-5-oxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-14-yl]-2-methylheptanoate

C27H41O3 (413.30555360000005)


3-oxocholest-4-en-26-oate belongs to bile acids, alcohols and derivatives class of compounds. Those are organic compounds containing an alcohol or acid derivative of cholic acid. 3-oxocholest-4-en-26-oate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 3-oxocholest-4-en-26-oate can be found in a number of food items such as acerola, tamarind, chinese chives, and quince, which makes 3-oxocholest-4-en-26-oate a potential biomarker for the consumption of these food products.

   
   

Metachromin S

Metachromin S

C26H39NO3 (413.29297840000004)


A sesquiterpenoid that is 5-amino-2-hydroxy-3-methyl-1,4-benzoquinone in which one of the hydrogens of the methyl group is replaced by a 2-methyl-4-[(1R,2S)-1,2,3-trimethylcyclohex-3-en-1-yl]but-1-en-1-yl group and one of the hydrogens attached to the nitrogen is replaced by a 3-methylbutyl group. It is isolated from an Okinawan sponge Spongia sp.SS-1037 and exhibits moderate cytotoxicity against L1210 murine leukemia and KB human epidermoid carcinoma cells.

   
   

Spiramine L

Spiramine J 15-acetate

C25H35NO4 (413.25659500000006)


   

Spiramine M

Spiramine J 7-acetate

C25H35NO4 (413.25659500000006)


   

Yesodine

15-[(S)-2-Methylbutyryl]pseudokobusine

C25H35NO4 (413.25659500000006)


   
   
   
   

2-benzyl-3-phenyl-propionic acid-[2-(3-diethylamino-propylsulfanyl)-ethyl ester]|2-Benzyl-3-phenyl-propionsaeure-[2-(3-diaethylamino-propylmercapto)-aethylester]

2-benzyl-3-phenyl-propionic acid-[2-(3-diethylamino-propylsulfanyl)-ethyl ester]|2-Benzyl-3-phenyl-propionsaeure-[2-(3-diaethylamino-propylmercapto)-aethylester]

C25H35NO2S (413.23883700000005)


   
   
   
   
   
   
   
   
   
   

5-(Pentylamino)-2-hydroxy-3-(1,2,4a-trimethyl-5-methylenedecalin-1-ylmethyl)-1,4-benzoquinone

5-(Pentylamino)-2-hydroxy-3-(1,2,4a-trimethyl-5-methylenedecalin-1-ylmethyl)-1,4-benzoquinone

C26H39NO3 (413.29297840000004)


   

17-phenyl trinor Prostaglandin E2 ethyl amide

N-ethyl--9-oxo-11α,15S-dihydroxy-17-phenyl-18,19,20-trinor-prosta-5Z,13E-dien-1-amide

C25H35NO4 (413.25659500000006)


   

Norbuprenorphine

Norbuprenorphine

C25H35NO4 (413.25659500000006)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids CONFIDENCE standard compound; INTERNAL_ID 1664

   

Ala Ala Pro Arg

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-aminopropanamido]propanoyl]pyrrolidin-2-yl]formamido}-5-carbamimidamidopentanoic acid

C17H31N7O5 (413.2386556)


   

Ala Ala Arg Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-aminopropanamido]propanamido]-5-carbamimidamidopentanoyl]pyrrolidine-2-carboxylic acid

C17H31N7O5 (413.2386556)


   

Ala Lys Pro Val

(2S)-2-{[(2S)-1-[(2S)-6-amino-2-[(2S)-2-aminopropanamido]hexanoyl]pyrrolidin-2-yl]formamido}-3-methylbutanoic acid

C19H35N5O5 (413.26380600000005)


   

Ala Lys Val Pro

(2S)-1-[(2S)-2-[(2S)-6-amino-2-[(2S)-2-aminopropanamido]hexanamido]-3-methylbutanoyl]pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Ala Pro Ala Arg

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-aminopropanoyl]pyrrolidin-2-yl]formamido}propanamido]-5-carbamimidamidopentanoic acid

C17H31N7O5 (413.2386556)


   

Ala Pro Lys Val

(2S)-2-[(2S)-6-amino-2-{[(2S)-1-[(2S)-2-aminopropanoyl]pyrrolidin-2-yl]formamido}hexanamido]-3-methylbutanoic acid

C19H35N5O5 (413.26380600000005)


   

Ala Pro Arg Ala

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-aminopropanoyl]pyrrolidin-2-yl]formamido}-5-carbamimidamidopentanamido]propanoic acid

C17H31N7O5 (413.2386556)


   

Ala Pro Val Lys

(2S)-6-amino-2-[(2S)-2-{[(2S)-1-[(2S)-2-aminopropanoyl]pyrrolidin-2-yl]formamido}-3-methylbutanamido]hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Ala Arg Ala Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-aminopropanamido]-5-carbamimidamidopentanamido]propanoyl]pyrrolidine-2-carboxylic acid

C17H31N7O5 (413.2386556)


   

Ala Arg Pro Ala

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-aminopropanamido]-5-carbamimidamidopentanoyl]pyrrolidin-2-yl]formamido}propanoic acid

C17H31N7O5 (413.2386556)


   

Ala Val Lys Pro

(2S)-1-[(2S)-6-amino-2-[(2S)-2-[(2S)-2-aminopropanamido]-3-methylbutanamido]hexanoyl]pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Ala Val Pro Lys

(2S)-6-amino-2-{[(2S)-1-[(2S)-2-[(2S)-2-aminopropanamido]-3-methylbutanoyl]pyrrolidin-2-yl]formamido}hexanoic acid

C19H35N5O5 (413.26380600000005)


   
   

Gly Ile Lys Pro

(2S)-1-[(2S)-6-amino-2-[(2S,3S)-2-(2-aminoacetamido)-3-methylpentanamido]hexanoyl]pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Gly Ile Pro Lys

(2S)-6-amino-2-{[(2S)-1-[(2S,3S)-2-(2-aminoacetamido)-3-methylpentanoyl]pyrrolidin-2-yl]formamido}hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Gly Lys Ile Pro

(2S)-1-[(2S,3S)-2-[(2S)-6-amino-2-(2-aminoacetamido)hexanamido]-3-methylpentanoyl]pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Gly Lys Leu Pro

(2S)-1-[(2S)-2-[(2S)-6-amino-2-(2-aminoacetamido)hexanamido]-4-methylpentanoyl]pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Gly Lys Pro Ile

(2S,3S)-2-{[(2S)-1-[(2S)-6-amino-2-(2-aminoacetamido)hexanoyl]pyrrolidin-2-yl]formamido}-3-methylpentanoic acid

C19H35N5O5 (413.26380600000005)


   

Gly Lys Pro Leu

(2S)-2-{[(2S)-1-[(2S)-6-amino-2-(2-aminoacetamido)hexanoyl]pyrrolidin-2-yl]formamido}-4-methylpentanoic acid

C19H35N5O5 (413.26380600000005)


   

Gly Leu Lys Pro

(2S)-1-[(2S)-6-amino-2-[(2S)-2-(2-aminoacetamido)-4-methylpentanamido]hexanoyl]pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Gly Leu Pro Lys

(2S)-6-amino-2-{[(2S)-1-[(2S)-2-(2-aminoacetamido)-4-methylpentanoyl]pyrrolidin-2-yl]formamido}hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Gly Pro Ile Lys

(2S)-6-amino-2-[(2S,3S)-2-{[(2S)-1-(2-aminoacetyl)pyrrolidin-2-yl]formamido}-3-methylpentanamido]hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Gly Pro Lys Ile

(2S,3S)-2-[(2S)-6-amino-2-{[(2S)-1-(2-aminoacetyl)pyrrolidin-2-yl]formamido}hexanamido]-3-methylpentanoic acid

C19H35N5O5 (413.26380600000005)


   

Gly Pro Lys Leu

(2S)-2-[(2S)-6-amino-2-{[(2S)-1-(2-aminoacetyl)pyrrolidin-2-yl]formamido}hexanamido]-4-methylpentanoic acid

C19H35N5O5 (413.26380600000005)


   

Gly Pro Leu Lys

(2S)-6-amino-2-[(2S)-2-{[(2S)-1-(2-aminoacetyl)pyrrolidin-2-yl]formamido}-4-methylpentanamido]hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Ile Gly Lys Pro

(2S)-1-[(2S)-6-amino-2-{2-[(2S,3S)-2-amino-3-methylpentanamido]acetamido}hexanoyl]pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Ile Gly Pro Lys

(2S)-6-amino-2-{[(2S)-1-{2-[(2S,3S)-2-amino-3-methylpentanamido]acetyl}pyrrolidin-2-yl]formamido}hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Ile Lys Gly Pro

(2S)-1-{2-[(2S)-6-amino-2-[(2S,3S)-2-amino-3-methylpentanamido]hexanamido]acetyl}pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Ile Lys Pro Gly

2-{[(2S)-1-[(2S)-6-amino-2-[(2S,3S)-2-amino-3-methylpentanamido]hexanoyl]pyrrolidin-2-yl]formamido}acetic acid

C19H35N5O5 (413.26380600000005)


   

Ile Pro Gly Lys

(2S)-6-amino-2-(2-{[(2S)-1-[(2S,3S)-2-amino-3-methylpentanoyl]pyrrolidin-2-yl]formamido}acetamido)hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Ile Pro Lys Gly

2-[(2S)-6-amino-2-{[(2S)-1-[(2S,3S)-2-amino-3-methylpentanoyl]pyrrolidin-2-yl]formamido}hexanamido]acetic acid

C19H35N5O5 (413.26380600000005)


   

Lys Ala Pro Val

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2,6-diaminohexanamido]propanoyl]pyrrolidin-2-yl]formamido}-3-methylbutanoic acid

C19H35N5O5 (413.26380600000005)


   

Lys Ala Val Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2,6-diaminohexanamido]propanamido]-3-methylbutanoyl]pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Lys Gly Ile Pro

(2S)-1-[(2S,3S)-2-{2-[(2S)-2,6-diaminohexanamido]acetamido}-3-methylpentanoyl]pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Lys Gly Leu Pro

(2S)-1-[(2S)-2-{2-[(2S)-2,6-diaminohexanamido]acetamido}-4-methylpentanoyl]pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Lys Gly Pro Ile

(2S,3S)-2-{[(2S)-1-{2-[(2S)-2,6-diaminohexanamido]acetyl}pyrrolidin-2-yl]formamido}-3-methylpentanoic acid

C19H35N5O5 (413.26380600000005)


   

Lys Gly Pro Leu

(2S)-2-{[(2S)-1-{2-[(2S)-2,6-diaminohexanamido]acetyl}pyrrolidin-2-yl]formamido}-4-methylpentanoic acid

C19H35N5O5 (413.26380600000005)


   

Lys Ile Gly Pro

(2S)-1-{2-[(2S,3S)-2-[(2S)-2,6-diaminohexanamido]-3-methylpentanamido]acetyl}pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Lys Ile Pro Gly

2-{[(2S)-1-[(2S,3S)-2-[(2S)-2,6-diaminohexanamido]-3-methylpentanoyl]pyrrolidin-2-yl]formamido}acetic acid

C19H35N5O5 (413.26380600000005)


   

Lys Leu Gly Pro

(2S)-1-{2-[(2S)-2-[(2S)-2,6-diaminohexanamido]-4-methylpentanamido]acetyl}pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Lys Leu Pro Gly

2-{[(2S)-1-[(2S)-2-[(2S)-2,6-diaminohexanamido]-4-methylpentanoyl]pyrrolidin-2-yl]formamido}acetic acid

C19H35N5O5 (413.26380600000005)


   

Lys Pro Ala Val

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2,6-diaminohexanoyl]pyrrolidin-2-yl]formamido}propanamido]-3-methylbutanoic acid

C19H35N5O5 (413.26380600000005)


   

Lys Pro Gly Ile

(2S,3S)-2-(2-{[(2S)-1-[(2S)-2,6-diaminohexanoyl]pyrrolidin-2-yl]formamido}acetamido)-3-methylpentanoic acid

C19H35N5O5 (413.26380600000005)


   

Lys Pro Gly Leu

(2S)-2-(2-{[(2S)-1-[(2S)-2,6-diaminohexanoyl]pyrrolidin-2-yl]formamido}acetamido)-4-methylpentanoic acid

C19H35N5O5 (413.26380600000005)


   

Lys Pro Ile Gly

2-[(2S,3S)-2-{[(2S)-1-[(2S)-2,6-diaminohexanoyl]pyrrolidin-2-yl]formamido}-3-methylpentanamido]acetic acid

C19H35N5O5 (413.26380600000005)


   

Lys Pro Leu Gly

2-[(2S)-2-{[(2S)-1-[(2S)-2,6-diaminohexanoyl]pyrrolidin-2-yl]formamido}-4-methylpentanamido]acetic acid

C19H35N5O5 (413.26380600000005)


   

Lys Pro Val Ala

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2,6-diaminohexanoyl]pyrrolidin-2-yl]formamido}-3-methylbutanamido]propanoic acid

C19H35N5O5 (413.26380600000005)


   

Lys Val Ala Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2,6-diaminohexanamido]-3-methylbutanamido]propanoyl]pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Lys Val Pro Ala

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2,6-diaminohexanamido]-3-methylbutanoyl]pyrrolidin-2-yl]formamido}propanoic acid

C19H35N5O5 (413.26380600000005)


   

Leu Gly Lys Pro

(2S)-1-[(2S)-6-amino-2-{2-[(2S)-2-amino-4-methylpentanamido]acetamido}hexanoyl]pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Leu Gly Pro Lys

(2S)-6-amino-2-{[(2S)-1-{2-[(2S)-2-amino-4-methylpentanamido]acetyl}pyrrolidin-2-yl]formamido}hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Leu Lys Gly Pro

(2S)-1-{2-[(2S)-6-amino-2-[(2S)-2-amino-4-methylpentanamido]hexanamido]acetyl}pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Leu Lys Pro Gly

2-{[(2S)-1-[(2S)-6-amino-2-[(2S)-2-amino-4-methylpentanamido]hexanoyl]pyrrolidin-2-yl]formamido}acetic acid

C19H35N5O5 (413.26380600000005)


   

Leu Pro Gly Lys

(2S)-6-amino-2-(2-{[(2S)-1-[(2S)-2-amino-4-methylpentanoyl]pyrrolidin-2-yl]formamido}acetamido)hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Leu Pro Lys Gly

2-[(2S)-6-amino-2-{[(2S)-1-[(2S)-2-amino-4-methylpentanoyl]pyrrolidin-2-yl]formamido}hexanamido]acetic acid

C19H35N5O5 (413.26380600000005)


   

Pro Ala Ala Arg

(2S)-5-carbamimidamido-2-[(2S)-2-[(2S)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]propanamido]pentanoic acid

C17H31N7O5 (413.2386556)


   

Pro Ala Lys Val

(2S)-2-[(2S)-6-amino-2-[(2S)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]hexanamido]-3-methylbutanoic acid

C19H35N5O5 (413.26380600000005)


   

Pro Ala Arg Ala

(2S)-2-[(2S)-5-carbamimidamido-2-[(2S)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]pentanamido]propanoic acid

C17H31N7O5 (413.2386556)


   

Pro Ala Val Lys

(2S)-6-amino-2-[(2S)-3-methyl-2-[(2S)-2-[(2S)-pyrrolidin-2-ylformamido]propanamido]butanamido]hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Pro Gly Ile Lys

(2S)-6-amino-2-[(2S,3S)-3-methyl-2-{2-[(2S)-pyrrolidin-2-ylformamido]acetamido}pentanamido]hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Pro Gly Lys Ile

(2S,3S)-2-[(2S)-6-amino-2-{2-[(2S)-pyrrolidin-2-ylformamido]acetamido}hexanamido]-3-methylpentanoic acid

C19H35N5O5 (413.26380600000005)


   

Pro Gly Lys Leu

(2S)-2-[(2S)-6-amino-2-{2-[(2S)-pyrrolidin-2-ylformamido]acetamido}hexanamido]-4-methylpentanoic acid

C19H35N5O5 (413.26380600000005)


   

Pro Gly Leu Lys

(2S)-6-amino-2-[(2S)-4-methyl-2-{2-[(2S)-pyrrolidin-2-ylformamido]acetamido}pentanamido]hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Pro Ile Gly Lys

(2S)-6-amino-2-{2-[(2S,3S)-3-methyl-2-[(2S)-pyrrolidin-2-ylformamido]pentanamido]acetamido}hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Pro Ile Lys Gly

2-[(2S)-6-amino-2-[(2S,3S)-3-methyl-2-[(2S)-pyrrolidin-2-ylformamido]pentanamido]hexanamido]acetic acid

C19H35N5O5 (413.26380600000005)


   

Pro Lys Ala Val

(2S)-2-[(2S)-2-[(2S)-6-amino-2-[(2S)-pyrrolidin-2-ylformamido]hexanamido]propanamido]-3-methylbutanoic acid

C19H35N5O5 (413.26380600000005)


   

Pro Lys Gly Ile

(2S,3S)-2-{2-[(2S)-6-amino-2-[(2S)-pyrrolidin-2-ylformamido]hexanamido]acetamido}-3-methylpentanoic acid

C19H35N5O5 (413.26380600000005)


   

Pro Lys Gly Leu

(2S)-2-{2-[(2S)-6-amino-2-[(2S)-pyrrolidin-2-ylformamido]hexanamido]acetamido}-4-methylpentanoic acid

C19H35N5O5 (413.26380600000005)


   

Pro Lys Ile Gly

2-[(2S,3S)-2-[(2S)-6-amino-2-[(2S)-pyrrolidin-2-ylformamido]hexanamido]-3-methylpentanamido]acetic acid

C19H35N5O5 (413.26380600000005)


   

Pro Lys Leu Gly

2-[(2S)-2-[(2S)-6-amino-2-[(2S)-pyrrolidin-2-ylformamido]hexanamido]-4-methylpentanamido]acetic acid

C19H35N5O5 (413.26380600000005)


   

Pro Lys Val Ala

(2S)-2-[(2S)-2-[(2S)-6-amino-2-[(2S)-pyrrolidin-2-ylformamido]hexanamido]-3-methylbutanamido]propanoic acid

C19H35N5O5 (413.26380600000005)


   

Pro Leu Gly Lys

(2S)-6-amino-2-{2-[(2S)-4-methyl-2-[(2S)-pyrrolidin-2-ylformamido]pentanamido]acetamido}hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Pro Leu Lys Gly

2-[(2S)-6-amino-2-[(2S)-4-methyl-2-[(2S)-pyrrolidin-2-ylformamido]pentanamido]hexanamido]acetic acid

C19H35N5O5 (413.26380600000005)


   

Pro Arg Ala Ala

(2S)-2-[(2S)-2-[(2S)-5-carbamimidamido-2-[(2S)-pyrrolidin-2-ylformamido]pentanamido]propanamido]propanoic acid

C17H31N7O5 (413.2386556)


   

Pro Val Ala Lys

(2S)-6-amino-2-[(2S)-2-[(2S)-3-methyl-2-[(2S)-pyrrolidin-2-ylformamido]butanamido]propanamido]hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Pro Val Lys Ala

(2S)-2-[(2S)-6-amino-2-[(2S)-3-methyl-2-[(2S)-pyrrolidin-2-ylformamido]butanamido]hexanamido]propanoic acid

C19H35N5O5 (413.26380600000005)


   

Arg Ala Ala Pro

(2S)-1-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]propanamido]propanoyl]pyrrolidine-2-carboxylic acid

C17H31N7O5 (413.2386556)


   

Arg Ala Pro Ala

(2S)-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]propanoyl]pyrrolidin-2-yl]formamido}propanoic acid

C17H31N7O5 (413.2386556)


   

Arg Pro Ala Ala

(2S)-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-5-carbamimidamidopentanoyl]pyrrolidin-2-yl]formamido}propanamido]propanoic acid

C17H31N7O5 (413.2386556)


   

Val Ala Lys Pro

(2S)-1-[(2S)-6-amino-2-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]propanamido]hexanoyl]pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Val Ala Pro Lys

(2S)-6-amino-2-{[(2S)-1-[(2S)-2-[(2S)-2-amino-3-methylbutanamido]propanoyl]pyrrolidin-2-yl]formamido}hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Val Lys Ala Pro

(2S)-1-[(2S)-2-[(2S)-6-amino-2-[(2S)-2-amino-3-methylbutanamido]hexanamido]propanoyl]pyrrolidine-2-carboxylic acid

C19H35N5O5 (413.26380600000005)


   

Val Lys Pro Ala

(2S)-2-{[(2S)-1-[(2S)-6-amino-2-[(2S)-2-amino-3-methylbutanamido]hexanoyl]pyrrolidin-2-yl]formamido}propanoic acid

C19H35N5O5 (413.26380600000005)


   

Val Pro Ala Lys

(2S)-6-amino-2-[(2S)-2-{[(2S)-1-[(2S)-2-amino-3-methylbutanoyl]pyrrolidin-2-yl]formamido}propanamido]hexanoic acid

C19H35N5O5 (413.26380600000005)


   

Val Pro Lys Ala

(2S)-2-[(2S)-6-amino-2-{[(2S)-1-[(2S)-2-amino-3-methylbutanoyl]pyrrolidin-2-yl]formamido}hexanamido]propanoic acid

C19H35N5O5 (413.26380600000005)


   

ethyl amide

N-ethyl-9α,11α-dihydroxy-15-keto-17-phenyl-18,19,20-trinor-prost-5Z,13E-dien-1-amide

C25H35NO4 (413.25659500000006)


   

N-stearoyl glutamic acid

N-octadecanoyl-glutamic acid

C23H43NO5 (413.31410680000005)


   

N-docosahexaenoyl GABA

N-(4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoyl)-gamma-aminobutyric acid

C26H39NO3 (413.29297840000004)


   

N-oleoyl methionine

N-(9Z-octadecenoyl)-methionine

C23H43NO3S (413.29634880000003)


   

CAR 16:1;O

(9Z)-3-hydroxyhexadec-9-enoylcarnitine;3-{[(9Z)-3-hydroxyhexadec-9-enoyl]oxy}-4-(trimethylammonio)butanoate

C23H43NO5 (413.31410680000005)


   

NA 23:2;O4

N-octadecanoyl-glutamic acid

C23H43NO5 (413.31410680000005)


   

NA 26:7;O2

N-(4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoyl)-gamma-aminobutyric acid

C26H39NO3 (413.29297840000004)


   

GLA dopamine

N-(6Z,9Z,12Z-octadecatrienoyl) dopamine

C26H39NO3 (413.29297840000004)


   
   

(-)-7-octylindolactam v

(-)-7-octylindolactam v

C25H39N3O2 (413.3042114)


   

(3aR,4R,6S,6aS)-4-(tert-butoxycarbonylamino)-3-(pentan-3-yl)-4,5,6,6a-tetrahydro-3aH-cyclopenta[d]isoxazole-6-carboxylic acid

(3aR,4R,6S,6aS)-4-(tert-butoxycarbonylamino)-3-(pentan-3-yl)-4,5,6,6a-tetrahydro-3aH-cyclopenta[d]isoxazole-6-carboxylic acid

C21H39N3O5 (413.2889564)


   

n,n-dibenzyl-o-(t-butyldimethylsilyl)-l-serine methyl ester

n,n-dibenzyl-o-(t-butyldimethylsilyl)-l-serine methyl ester

C24H35NO3Si (413.23860800000006)


   

Lasofoxifene

Lasofoxifene

C28H31NO2 (413.2354666)


G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03X - Other sex hormones and modulators of the genital system > G03XC - Selective estrogen receptor modulators C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist C1892 - Chemopreventive Agent

   
   

Dihydroetorphine

Dihydroetorphine

C25H35NO4 (413.25659500000006)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

15-Keto Bimatoprost

(5Z)-7-((1R,2R,3R,5S)-3,5-Dihydroxy-2-((1E)-3-oxo-5-phenyl-1-penten-1-yl)cyclopentyl)-N-ethyl-5-heptenamide

C25H35NO4 (413.25659500000006)


   

Tetrabutylammonium 4-toluenesulfonate

Tetrabutylammonium 4-toluenesulfonate

C23H43NO3S (413.29634880000003)


   

Stearoyl glutamic acid

N-(1-oxooctadecyl)-L-glutamic acid

C23H43NO5 (413.31410680000005)


   
   

3-hydroxy-(9Z)-hexadecenoyl-L-carnitine

3-hydroxy-(9Z)-hexadecenoyl-L-carnitine

C23H43NO5 (413.31410680000005)


A O-hydroxyhexadecenoyl-L-carnitine in which the acyl group specified is 3-hydroxy-(9Z)-hexadecenoyl.

   

N-Cyclooctylglycyl-N-(4-Carbamimidoylbenzyl)-L-Prolinamide

N-Cyclooctylglycyl-N-(4-Carbamimidoylbenzyl)-L-Prolinamide

C23H35N5O2 (413.279061)


   

16-(2-Hydroxy-3,3-dimethylbutan-2-yl)-15-methoxy-13-oxa-5-azahexacyclo[13.2.2.12,8.01,6.02,14.012,20]icosa-8(20),9,11-trien-11-ol

16-(2-Hydroxy-3,3-dimethylbutan-2-yl)-15-methoxy-13-oxa-5-azahexacyclo[13.2.2.12,8.01,6.02,14.012,20]icosa-8(20),9,11-trien-11-ol

C25H35NO4 (413.25659500000006)


   

3-oxocholest-4-en-26-oate

(6R)-6-[(1S,2R,10S,11S,14R,15R)-2,15-dimethyl-5-oxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-14-yl]-2-methylheptanoate

C27H41O3- (413.30555360000005)


3-oxocholest-4-en-26-oate belongs to bile acids, alcohols and derivatives class of compounds. Those are organic compounds containing an alcohol or acid derivative of cholic acid. 3-oxocholest-4-en-26-oate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 3-oxocholest-4-en-26-oate can be found in a number of food items such as acerola, tamarind, chinese chives, and quince, which makes 3-oxocholest-4-en-26-oate a potential biomarker for the consumption of these food products.

   

5-Hydroxy-2-(3-methylbutanoyl)-4,4,6-tris(3-methylbut-2-en-1-yl)-3-oxocyclohexa-1,5-dien-1-olate

5-Hydroxy-2-(3-methylbutanoyl)-4,4,6-tris(3-methylbut-2-en-1-yl)-3-oxocyclohexa-1,5-dien-1-olate

C26H37O4- (413.2691702)


   
   
   

5-Hydroxy-2-(2-methylbutanoyl)-4,4,6-tris(3-methylbut-2-en-1-yl)-3-oxocyclohexa-1,5-dien-1-olate

5-Hydroxy-2-(2-methylbutanoyl)-4,4,6-tris(3-methylbut-2-en-1-yl)-3-oxocyclohexa-1,5-dien-1-olate

C26H37O4- (413.2691702)


   
   

(2S,6E)-6-[(3S,8R,9S,10R,13S,14S)-3-hydroxy-10,13-dimethyl-1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-ylidene]-2-methylheptanoate

(2S,6E)-6-[(3S,8R,9S,10R,13S,14S)-3-hydroxy-10,13-dimethyl-1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-ylidene]-2-methylheptanoate

C27H41O3- (413.30555360000005)


   

3-Hydroxy-9-hexadecenoylcarnitine

3-Hydroxy-9-hexadecenoylcarnitine

C23H43NO5 (413.31410680000005)


   
   

(3Z)-9-Hydroxyhexadecenoylcarnitine

(3Z)-9-Hydroxyhexadecenoylcarnitine

C23H43NO5 (413.31410680000005)


   

(6E)-9-Hydroxyhexadecenoylcarnitine

(6E)-9-Hydroxyhexadecenoylcarnitine

C23H43NO5 (413.31410680000005)


   

(2E)-4-Hydroxyhexadecenoylcarnitine

(2E)-4-Hydroxyhexadecenoylcarnitine

C23H43NO5 (413.31410680000005)


   

(10Z)-7-Hydroxyhexadecenoylcarnitine

(10Z)-7-Hydroxyhexadecenoylcarnitine

C23H43NO5 (413.31410680000005)


   

(9Z)-12-Hydroxyhexadecenoylcarnitine

(9Z)-12-Hydroxyhexadecenoylcarnitine

C23H43NO5 (413.31410680000005)


   

(8Z)-10-Hydroxyhexadecenoylcarnitine

(8Z)-10-Hydroxyhexadecenoylcarnitine

C23H43NO5 (413.31410680000005)


   

(10Z)-12-Hydroxyhexadecenoylcarnitine

(10Z)-12-Hydroxyhexadecenoylcarnitine

C23H43NO5 (413.31410680000005)


   

4-[[(4E,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]butanoic acid

4-[[(4E,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]butanoic acid

C26H39NO3 (413.29297840000004)


   

(E)-3,19-dihydroxy-4-oxo-3-[(trimethylazaniumyl)methyl]nonadec-5-enoate

(E)-3,19-dihydroxy-4-oxo-3-[(trimethylazaniumyl)methyl]nonadec-5-enoate

C23H43NO5 (413.31410680000005)


   

(25S)-Delta(7)-dafachronate

(25S)-Delta(7)-dafachronate

C27H41O3- (413.30555360000005)


A steroid acid anion that is the conjugate base of (25S)-Delta(7)-dafachronic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

Ethyl 1-[2-({3-[ethyl(phenyl)amino]propyl}amino)-3,4-dioxocyclobut-1-en-1-yl]piperidine-4-carboxylate

Ethyl 1-[2-({3-[ethyl(phenyl)amino]propyl}amino)-3,4-dioxocyclobut-1-en-1-yl]piperidine-4-carboxylate

C23H31N3O4 (413.23144460000003)


   

N-(1H-indol-5-yl)-1-[3-methyl-2-[[2-(methylamino)-1-oxopropyl]amino]-1-oxobutyl]-2-pyrrolidinecarboxamide

N-(1H-indol-5-yl)-1-[3-methyl-2-[[2-(methylamino)-1-oxopropyl]amino]-1-oxobutyl]-2-pyrrolidinecarboxamide

C22H31N5O3 (413.2426776)


   

Pyroglutamylarginyllysine

Pyroglutamylarginyllysine

C17H31N7O5 (413.2386556)


   

Pyroglutamyllysylarginine

Pyroglutamyllysylarginine

C17H31N7O5 (413.2386556)


   

2-Amino-6,7-dimethyl-5-(1-octylpyridin-1-ium-3-carbonyl)-1,6,7,8-tetrahydropteridin-4-one

2-Amino-6,7-dimethyl-5-(1-octylpyridin-1-ium-3-carbonyl)-1,6,7,8-tetrahydropteridin-4-one

C22H33N6O2+ (413.2664858)


   

(1S,9R,10R,11R)-5-(cyclopenten-1-yl)-10-(hydroxymethyl)-6-oxo-12-propanoyl-N-propyl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide

(1S,9R,10R,11R)-5-(cyclopenten-1-yl)-10-(hydroxymethyl)-6-oxo-12-propanoyl-N-propyl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide

C23H31N3O4 (413.23144460000003)


   

(1R,9S,10S,11S)-5-(cyclopenten-1-yl)-10-(hydroxymethyl)-6-oxo-12-propanoyl-N-propyl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide

(1R,9S,10S,11S)-5-(cyclopenten-1-yl)-10-(hydroxymethyl)-6-oxo-12-propanoyl-N-propyl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide

C23H31N3O4 (413.23144460000003)


   

(1R,9S,10S,11S)-12-(cyclopentylmethyl)-10-(hydroxymethyl)-6-oxo-5-[(E)-prop-1-enyl]-N-propyl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide

(1R,9S,10S,11S)-12-(cyclopentylmethyl)-10-(hydroxymethyl)-6-oxo-5-[(E)-prop-1-enyl]-N-propyl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide

C24H35N3O3 (413.267828)


   

[(1S)-1-(hydroxymethyl)-7-methoxy-1,9-dimethyl-2-spiro[1,3-dihydropyrido[3,4-b]indole-4,3-azetidine]yl]-(4-oxanyl)methanone

[(1S)-1-(hydroxymethyl)-7-methoxy-1,9-dimethyl-2-spiro[1,3-dihydropyrido[3,4-b]indole-4,3-azetidine]yl]-(4-oxanyl)methanone

C23H31N3O4 (413.23144460000003)


   

[(1S)-1-(hydroxymethyl)-7-methoxy-1-spiro[1,2,3,9-tetrahydropyrido[3,4-b]indole-4,4-piperidine]yl]-(4-oxanyl)methanone

[(1S)-1-(hydroxymethyl)-7-methoxy-1-spiro[1,2,3,9-tetrahydropyrido[3,4-b]indole-4,4-piperidine]yl]-(4-oxanyl)methanone

C23H31N3O4 (413.23144460000003)


   

[(1R)-1-(hydroxymethyl)-7-methoxy-1-spiro[1,2,3,9-tetrahydropyrido[3,4-b]indole-4,4-piperidine]yl]-(4-oxanyl)methanone

[(1R)-1-(hydroxymethyl)-7-methoxy-1-spiro[1,2,3,9-tetrahydropyrido[3,4-b]indole-4,4-piperidine]yl]-(4-oxanyl)methanone

C23H31N3O4 (413.23144460000003)


   
   
   

3-(3-Hydroxyhexadec-9-enoyloxy)-4-(trimethylazaniumyl)butanoate

3-(3-Hydroxyhexadec-9-enoyloxy)-4-(trimethylazaniumyl)butanoate

C23H43NO5 (413.31410680000005)


   

(2E)-17-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]heptadec-2-enoate

(2E)-17-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]heptadec-2-enoate

C23H41O6- (413.2902986)


   

3-Farnesyl-2,3,5-trimethyl-6-hydroxy-4-oxocyclohexa-1,5-diene-1-carboxylic acid methyl ester

3-Farnesyl-2,3,5-trimethyl-6-hydroxy-4-oxocyclohexa-1,5-diene-1-carboxylic acid methyl ester

C26H37O4- (413.2691702)


   

(1S,9R,10R,11R)-12-(cyclopentylmethyl)-10-(hydroxymethyl)-6-oxo-5-[(E)-prop-1-enyl]-N-propyl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide

(1S,9R,10R,11R)-12-(cyclopentylmethyl)-10-(hydroxymethyl)-6-oxo-5-[(E)-prop-1-enyl]-N-propyl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide

C24H35N3O3 (413.267828)


   

(E,16R)-16-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxyheptadec-2-enoate

(E,16R)-16-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxyheptadec-2-enoate

C23H41O6- (413.2902986)


   

[(2S,3S)-2-benzhydryl-1-azabicyclo[2.2.2]octan-3-yl]-[(2-methoxyphenyl)methyl]azanium

[(2S,3S)-2-benzhydryl-1-azabicyclo[2.2.2]octan-3-yl]-[(2-methoxyphenyl)methyl]azanium

C28H33N2O+ (413.2592748)


   
   
   

2-(2-Butyl-5-methyl-1,3,2-dioxaborolan-4-yl)methoxy-N-(2-ethylaminoethyl)-4-quinolinecarboxamide

2-(2-Butyl-5-methyl-1,3,2-dioxaborolan-4-yl)methoxy-N-(2-ethylaminoethyl)-4-quinolinecarboxamide

C22H32BN3O4 (413.2485742)


   
   

lupulone(1-)

lupulone(1-)

C26H37O4 (413.2691702)


A beta-bitter acid(1-) that is the conjugate base of lupulone, obtained by deprotonation of the 1-hydroxy group. It is the major microspecies at pH 7.3 (according to Marvin v 6.2.0.).

   

(25S)-Delta(4)-dafachronate

(25S)-Delta(4)-dafachronate

C27H41O3 (413.30555360000005)


A steroid acid anion that is the conjugate base of (25S)-Delta(4)-dafachronic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

adlupulone(1-)

adlupulone(1-)

C26H37O4 (413.2691702)


A beta-bitter acid(1-) that is the conjugate base of adlupulone, obtained by deprotonation of one of the enolic hydroxy groups. It is the major microspecies at pH 7.3 (according to Marvin v 6.2.0.).

   

3-hydroxypalmitoleoylcarnitine

3-hydroxypalmitoleoylcarnitine

C23H43NO5 (413.31410680000005)


An O-acylcarnitine having 3-hydroxypalmitoleoyl as the acyl substituent.

   
   

oscr#29(1-)

oscr#29(1-)

C23H41O6 (413.2902986)


A hydroxy fatty acid ascaroside anion that is the conjugate base of oscr#29, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

O-(hydroxyhexadecenoyl)carnitine

O-(hydroxyhexadecenoyl)carnitine

C23H43NO5 (413.31410680000005)


An O-acylcarnitine having a hydroxyhexadecenoyl group as the acyl substituent in which the position of the hydroxy group and the double bond is unspecified.

   

O-hydroxyhexadecenoyl-L-carnitine

O-hydroxyhexadecenoyl-L-carnitine

C23H43NO5 (413.31410680000005)


An O-acyl-L-carnitine that is L-carnitine having a hydroxyhexadecenoyl group as the acyl substituent in which the position of the hydroxy group and the double bond is unspecified.

   

ascr#29(1-)

ascr#29(1-)

C23H41O6 (413.2902986)


Conjugate base of ascr#29

   

CarE(16:1)

CarE(16:1(1+O))

C23H43NO5 (413.31410680000005)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   

NA-His 18:4(6Z,9Z,12Z,15Z)

NA-His 18:4(6Z,9Z,12Z,15Z)

C24H35N3O3 (413.267828)


   
   
   
   
   
   
   
   

13-methoxy-3,15-dimethyl-6-(6-methylhepta-3,5-dien-2-yl)-12-azatetracyclo[8.5.1.0³,⁷.0¹³,¹⁶]hexadeca-9,11-diene-11,15-diol

13-methoxy-3,15-dimethyl-6-(6-methylhepta-3,5-dien-2-yl)-12-azatetracyclo[8.5.1.0³,⁷.0¹³,¹⁶]hexadeca-9,11-diene-11,15-diol

C26H39NO3 (413.29297840000004)


   

2-[(2e,5e,7e,11e)-10-hydroxy-3,7,9,11,13-pentamethyltetradeca-2,5,7,11-tetraen-1-yl]-6-methoxy-3-methylpyridin-4-ol

2-[(2e,5e,7e,11e)-10-hydroxy-3,7,9,11,13-pentamethyltetradeca-2,5,7,11-tetraen-1-yl]-6-methoxy-3-methylpyridin-4-ol

C26H39NO3 (413.29297840000004)


   

(2s)-2-{[(2s)-1-hydroxy-2-{[hydroxy((2s)-pyrrolidin-2-yl)methylidene]amino}-3-(1h-indol-3-yl)propylidene]amino}-4-methylpentanimidic acid

(2s)-2-{[(2s)-1-hydroxy-2-{[hydroxy((2s)-pyrrolidin-2-yl)methylidene]amino}-3-(1h-indol-3-yl)propylidene]amino}-4-methylpentanimidic acid

C22H31N5O3 (413.2426776)


   

2-hydroxy-3-[3-methyl-5-(1,2,3-trimethylcyclohex-3-en-1-yl)pent-2-en-1-yl]-5-[(3-methylbutyl)amino]cyclohexa-2,5-diene-1,4-dione

2-hydroxy-3-[3-methyl-5-(1,2,3-trimethylcyclohex-3-en-1-yl)pent-2-en-1-yl]-5-[(3-methylbutyl)amino]cyclohexa-2,5-diene-1,4-dione

C26H39NO3 (413.29297840000004)


   

3-{hydroxy[1,3,6-trimethyl-2-(penta-1,3-dien-1-yl)-4a,5,6,7,8,8a-hexahydro-2h-naphthalen-1-yl]methylidene}-5-(hydroxymethyl)-1-methylpyrrolidine-2,4-dione

3-{hydroxy[1,3,6-trimethyl-2-(penta-1,3-dien-1-yl)-4a,5,6,7,8,8a-hexahydro-2h-naphthalen-1-yl]methylidene}-5-(hydroxymethyl)-1-methylpyrrolidine-2,4-dione

C25H35NO4 (413.25659500000006)


   

methyl (1r,3s,4r,10s,14s,15r,18r,19s)-18-[(acetyloxy)methyl]-14-methyl-12-azahexacyclo[10.6.1.1¹,⁴.0¹⁰,¹⁸.0¹⁵,¹⁹.0⁷,²⁰]icos-7(20)-ene-3-carboxylate

methyl (1r,3s,4r,10s,14s,15r,18r,19s)-18-[(acetyloxy)methyl]-14-methyl-12-azahexacyclo[10.6.1.1¹,⁴.0¹⁰,¹⁸.0¹⁵,¹⁹.0⁷,²⁰]icos-7(20)-ene-3-carboxylate

C25H35NO4 (413.25659500000006)


   

(1s,3r,6r,7s,9e,13s,15r,16r)-13-methoxy-3,15-dimethyl-6-[(2s,3z)-6-methylhepta-3,5-dien-2-yl]-12-azatetracyclo[8.5.1.0³,⁷.0¹³,¹⁶]hexadeca-9,11-diene-11,15-diol

(1s,3r,6r,7s,9e,13s,15r,16r)-13-methoxy-3,15-dimethyl-6-[(2s,3z)-6-methylhepta-3,5-dien-2-yl]-12-azatetracyclo[8.5.1.0³,⁷.0¹³,¹⁶]hexadeca-9,11-diene-11,15-diol

C26H39NO3 (413.29297840000004)


   

12-ethyl-20-hydroxy-5-methyl-19-methylidene-10-oxa-12-azaheptacyclo[16.2.1.0¹,¹⁵.0²,¹³.0⁴,¹⁴.0⁵,¹¹.0⁸,¹⁴]henicosan-17-yl acetate

12-ethyl-20-hydroxy-5-methyl-19-methylidene-10-oxa-12-azaheptacyclo[16.2.1.0¹,¹⁵.0²,¹³.0⁴,¹⁴.0⁵,¹¹.0⁸,¹⁴]henicosan-17-yl acetate

C25H35NO4 (413.25659500000006)