Exact Mass: 412.3341
Exact Mass Matches: 412.3341
Found 156 metabolites which its exact mass value is equals to given mass value 412.3341
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Doxercalciferol
H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols D050071 - Bone Density Conservation Agents
10Z,13Z,16Z,19Z,22Z,25Z-octacosahexaenoic acid
A very long-chain omega-3 fatty acid that is octacosanoic acid having six double bonds located at positions 10, 13, 16, 19, 22 and 25 (the 10Z,13Z,16Z,19Z,22Z,25Z-isomer).
(5x,6x)-5,6-Epoxyergosta-7,22-dien-3-ol
(5x,6x)-5,6-Epoxyergosta-7,22-dien-3-ol is found in mushrooms. (5x,6x)-5,6-Epoxyergosta-7,22-dien-3-ol is a constituent of Armillaria mellea (honey mushroom). Constituent of Armillaria mellea (honey mushroom). (5x,6x)-5,6-Epoxyergosta-7,22-dien-3-ol is found in mushrooms.
(24R)-Ergost-4-ene-3,6-dione
(24S)-Ergost-4-ene-3,6-dione is found in pulses. (24S)-Ergost-4-ene-3,6-dione is isolated from Glycine max (soybean).
Portensterol
Portensterol is a constituent of Tricholoma portentosum and Clitocybe nebularis (clouded agaric) Constituent of Tricholoma portentosum and Clitocybe nebularis (clouded agaric).
Amasterol
Amasterol is found in green vegetables. Amasterol is isolated from Amaranthus viridis (calalu Isolated from Amaranthus viridis (calalu). Amasterol is found in green vegetables.
25-Hydroxyvitamin D2
9,10-Secoergosta-5,7,10(19),22-tetraene-3,25-diol. Biologically active metabolite of vitamin D2 which is more active in curing rickets than its parent. The compound is believed to attach to the same receptor as vitamin D2 and 25-hydroxyvitamin D3. [HMDB] 9,10-Secoergosta-5,7,10(19),22-tetraene-3,25-diol. Biologically active metabolite of vitamin D2 which is more active in curing rickets than its parent. The compound is believed to attach to the same receptor as vitamin D2 and 25-hydroxyvitamin D3. D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols D050071 - Bone Density Conservation Agents
4a-Formyl-5a-cholesta-8,24-dien-3b-ol
4a-Formyl-5a-cholesta-8,24-dien-3b-ol is an intermediate in the biosynthesis of cholesterol, in a reaction catalyzed by the enzyme methylsterol monooxygenase (EC 1.14.13.72, 4,4-dimethyl-5alpha-cholest-7-en-3beta-ol,hydrogen-donor:oxygen oxidoreductase (hydroxylating)). (MetaCyc).
4α-formyl-5α-cholesta-8,24-dien-3β-ol
4α-formyl-5α-cholesta-8,24-dien-3β-ol is considered to be practically insoluble (in water) and relatively neutral. 4α-formyl-5α-cholesta-8,24-dien-3β-ol is a sterol lipid molecule
N-Palmitoyl Arginine
N-palmitoyl arginine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Palmitic acid amide of Arginine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Palmitoyl Arginine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Palmitoyl Arginine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
N-Stearoyl Glutamine
N-stearoyl glutamine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Stearic acid amide of Glutamine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Stearoyl Glutamine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Stearoyl Glutamine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
25-hydoxyergocalciferol
Doxercalciferol
Campest-4-en-3,6-dione
Campest-4-en-3,6-dione belongs to ergosterols and derivatives class of compounds. Those are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Campest-4-en-3,6-dione is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Campest-4-en-3,6-dione can be found in date, which makes campest-4-en-3,6-dione a potential biomarker for the consumption of this food product.
(22E)-24alpha-methyl-cholest-4,8(9),22(23)-triene-3alpha,7beta-diol
3beta-hydroxy-26-nor-9,19-cyclolanost-23-en-25-one
3beta-hydroxy-24-methylene-5-cholesten-7-one|cholesta-5,24(24)-dien-3beta-ol-7-one|ergosta-5,24(28)-dien-3beta-ol-7-one
(3S,5Z,7E,22E,24xi)-9,10-Secoergosta-5,7,10(19),22-tetraene-3,24-diol
(22E,24R)-3beta-hydroxy-5alpha-ergosta-7,22-dien-6-one|(22E,24R)-3beta-hydroxyergosta-7,22-dien-6-one|3beta-Hydroxy-5alpha-ergosta-7,22-dien-6-on|3beta-Hydroxy-5alpha-ergostadien-7.22-6-on
3-hydroxy-9,10-secoergosta-1,3,5(10)-trien-9-one|sibogol C
(3S,6Z,22E,24xi)-9,10-Secoergosta-5(10),6,8(14),22-tetraene-3,24-diol
1-(16-phenyl-12Z-hexadecenyl)-4-cyclohexene-(1S*,3S*)-diol
ST 28:3;O2
5,6-Epoxyergosterol is a natural product found in Ophiocordyceps sinensis with data available.
Ercalcidiol
D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols D050071 - Bone Density Conservation Agents
24-hydroxyvitamin D2 / 24-hydroxyergocalciferol
24-epi-25-hydroxyvitamin D2 / 24-epi-25-hydroxyergocalciferol
1α,25-dihydroxy-20-epivitamin D2 / 1α,25-dihydroxy-20-epiergocalciferol
(5Z,7E,22E)-(3S,25R)-26-methyl-9,10-seco-5,7,10(19),22-cholestatetraene-3,25-diol
(5Z,7E,22E)-(3S,25S)-26-methyl-9,10-seco-5,7,10(19),22-cholestatetraene-3,25-diol
(5Z,7E,23E)-(3S)-9,10-seco-5,7,10(19),23-ergostatetraene-3,25-diol
(5x,6x)-5,6-Epoxyergosta-7,22-dien-3-ol
Portensterol
1-Cyano-2-methylisothiourea
24-hydroxyvitamin D2
D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols
25-Hydroxycalciferol
A hydroxycalciol that is vitamin D2 in which the hydrogen at position 25 has been replaced by a hydroxy group. D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols D050071 - Bone Density Conservation Agents
(22E)-(25S)-25-hydroxy-26-methyl-22,23-didehydrovitamin D3
25-hydroxy-24-methyl-23,24-didehydrovitamin D3
(1R,3Z)-3-[(2E)-2-[(1R,3aS,7aR)-1-[(E,2R,5S)-6-hydroxy-5,6-dimethylhept-3-en-2-yl]-7a-methyl-2,3,3a,5,6,7-hexahydro-1H-inden-4-ylidene]ethylidene]-4-methylidenecyclohexan-1-ol
3beta-Hydroxyergosta-8,24(28)-dien-7-one
An ergostanoid that is (5alpha)-ergosta-8,24(28)-diene substituted by a beta-hydroxy group at position 3 and an oxo group at position 7. It has been isolated from Aspergillus ochraceus.
(1R,3S,E)-5-((E)-2-((1R,3AS,7aR)-1-((2R,5S,E)-5,6-dimethylhept-3-en-2-yl)-7a-methyldihydro-1H-inden-4(2H,5H,6H,7H,7aH)-ylidene)ethylidene)-4-methylenecyclohexa
(5Z)-5-[(2E)-2-[1-[(E)-5,6-dimethylhept-3-en-2-yl]-7a-methyl-2,3,3a,5,6,7-hexahydro-1H-inden-4-ylidene]ethylidene]-4-methylidenecyclohexane-1,3-diol
(10R,13R)-17-[(2R,5R)-5,6-dimethylheptan-2-yl]-10,13-dimethyl-2,7,8,9,11,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthrene-3,6-dione
[3-carboxy-2-[(E)-heptadec-9-enoyl]oxypropyl]-trimethylazanium
[3-carboxy-2-[(E)-heptadec-10-enoyl]oxypropyl]-trimethylazanium
[3-carboxy-2-[(Z)-heptadec-7-enoyl]oxypropyl]-trimethylazanium
[3-carboxy-2-[8-[(1R,2S)-2-hexylcyclopropyl]octanoyloxy]propyl]-trimethylazanium
4alpha-formylzymosterol
A 4-formylzymosterol in which the formyl group at position 4 has alpha-configuration.
4-formylzymosterol
A 3beta-sterol that is zymosterol which carries a formyl group at position 4.
all-trans-retinyl octanoate
An all-trans-retinyl ester obtained by formal condensation of the carboxy group of octanoic acid with the hydroxy group of all-trans-retinol.
(3e,6s)-6-[(1s,3r,7s,8r,11s,12s,15r,16r)-7-hydroxy-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-15-yl]hept-3-en-2-one
4-hydroxy-9a,11a-dimethyl-1-(6-methyl-5-methylideneheptan-2-yl)-1h,2h,3h,3ah,3bh,4h,5h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
(1r,3ar,5as,9as,9br,11ar)-1-[(2r,5s,6s)-7-hydroxy-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
(2s,5s,7s,11r,14r,15r)-14-[(2s,3e,5s)-5,6-dimethylhept-3-en-2-yl]-2,15-dimethyl-18-oxatetracyclo[8.7.1.0²,⁷.0¹¹,¹⁵]octadeca-1(17),9-dien-5-ol
2-methyl-1-[3,3,7-trimethyl-8,10-bis(3-methylbut-2-en-1-yl)-2-oxatricyclo[5.3.1.0⁴,¹¹]undec-1(10)-en-11-yl]butan-1-one
(1r,3ar,7s,9ar,9bs,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-7-peroxol
(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-4-one
6,9-epoxy-ergosta-7,22-dien-3-ol
{"Ingredient_id": "HBIN012149","Ingredient_name": "6,9-epoxy-ergosta-7,22-dien-3-ol","Alias": "NA","Ingredient_formula": "C28H44O2","Ingredient_Smile": "CC(C)C(C)C=CC(C)C1CCC2C1(CCC34C2=CC(O3)C5C4(CCC(C5)O)C)C","Ingredient_weight": "412.6 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "7092","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "139587755","DrugBank_id": "NA"}