Exact Mass: 409.26505040000006
Exact Mass Matches: 409.26505040000006
Found 202 metabolites which its exact mass value is equals to given mass value 409.26505040000006
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Veratramine
Veratramine is a piperidine alkaloid comprising the 14,15,16,17-tetradehydro derivative of veratraman having two hydroxy groups at the 3- and 23-positions. It derives from a hydride of a veratraman. Veratramine is a natural product found in Veratrum grandiflorum, Veratrum mengtzeanum, and other organisms with data available. Veratramine is a hypotensive alkaloid isolated from the rhizomes of Veratrum. A piperidine alkaloid comprising the 14,15,16,17-tetradehydro derivative of veratraman having two hydroxy groups at the 3- and 23-positions. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids Data obtained from a veratramine standard purchased from Logan Natural Products, Logan, Utah USA. Veratramine(NSC17821; NSC23880) is useful as a signal transduction inhibitor for treating tumors. Veratramine(NSC17821; NSC23880) is useful as a signal transduction inhibitor for treating tumors.
Acidissiminol epoxide
C25H31NO4 (409.22529660000004)
Acidissiminol epoxide is found in beverages. Acidissiminol epoxide is an alkaloid from fruits of Limonia acidissima (wood apple). Alkaloid from fruits of Limonia acidissima (wood apple). Acidissiminol epoxide is found in beverages and fruits.
(3E,5Z,11Z)-Pentadeca-3,5,11-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
(3E,5Z,11Z)-Pentadeca-3,5,11-trienedioylcarnitine is an acylcarnitine. More specifically, it is an (3E,5Z,11Z)-pentadeca-3,5,11-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (3E,5Z,11Z)-Pentadeca-3,5,11-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (3E,5Z,11Z)-Pentadeca-3,5,11-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Pentadeca-9,11,13-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
Pentadeca-9,11,13-trienedioylcarnitine is an acylcarnitine. More specifically, it is an pentadeca-9,11,13-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Pentadeca-9,11,13-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Pentadeca-9,11,13-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Pentadeca-3,6,9-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
Pentadeca-3,6,9-trienedioylcarnitine is an acylcarnitine. More specifically, it is an pentadeca-3,6,9-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Pentadeca-3,6,9-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Pentadeca-3,6,9-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Pentadeca-7,10,13-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
Pentadeca-7,10,13-trienedioylcarnitine is an acylcarnitine. More specifically, it is an pentadeca-7,10,13-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Pentadeca-7,10,13-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Pentadeca-7,10,13-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Pentadeca-4,6,8-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
Pentadeca-4,6,8-trienedioylcarnitine is an acylcarnitine. More specifically, it is an pentadeca-4,6,8-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Pentadeca-4,6,8-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Pentadeca-4,6,8-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Pentadeca-5,8,11-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
Pentadeca-5,8,11-trienedioylcarnitine is an acylcarnitine. More specifically, it is an pentadeca-5,8,11-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Pentadeca-5,8,11-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Pentadeca-5,8,11-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2E,6E,10E)-Pentadeca-2,6,10-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
(2E,6E,10E)-Pentadeca-2,6,10-trienedioylcarnitine is an acylcarnitine. More specifically, it is an (2E,6E,10E)-pentadeca-2,6,10-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E,6E,10E)-Pentadeca-2,6,10-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (2E,6E,10E)-Pentadeca-2,6,10-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Pentadeca-5,7,9-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
Pentadeca-5,7,9-trienedioylcarnitine is an acylcarnitine. More specifically, it is an pentadeca-5,7,9-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Pentadeca-5,7,9-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Pentadeca-5,7,9-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Pentadeca-3,5,7-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
Pentadeca-3,5,7-trienedioylcarnitine is an acylcarnitine. More specifically, it is an pentadeca-3,5,7-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Pentadeca-3,5,7-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Pentadeca-3,5,7-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
5-(3,4-Dimethyl-5-pentylfuran-2-yl)pentanoylcarnitine
5-(3,4-dimethyl-5-pentylfuran-2-yl)pentanoylcarnitine is an acylcarnitine. More specifically, it is an 5-(3,4-dimethyl-5-pentylfuran-2-yl)pentanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-(3,4-dimethyl-5-pentylfuran-2-yl)pentanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 5-(3,4-dimethyl-5-pentylfuran-2-yl)pentanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
6-(5-Hexylfuran-2-yl)hexanoylcarnitine
6-(5-hexylfuran-2-yl)hexanoylcarnitine is an acylcarnitine. More specifically, it is an 6-(5-hexylfuran-2-yl)hexanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 6-(5-hexylfuran-2-yl)hexanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 6-(5-hexylfuran-2-yl)hexanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
7-(3,4-Dimethyl-5-propylfuran-2-yl)heptanoylcarnitine
7-(3,4-dimethyl-5-propylfuran-2-yl)heptanoylcarnitine is an acylcarnitine. More specifically, it is an 7-(3,4-dimethyl-5-propylfuran-2-yl)heptanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-(3,4-dimethyl-5-propylfuran-2-yl)heptanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 7-(3,4-dimethyl-5-propylfuran-2-yl)heptanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
7-(5-Pentylfuran-2-yl)heptanoylcarnitine
7-(5-pentylfuran-2-yl)heptanoylcarnitine is an acylcarnitine. More specifically, it is an 7-(5-pentylfuran-2-yl)heptanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-(5-pentylfuran-2-yl)heptanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 7-(5-pentylfuran-2-yl)heptanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
8-(5-Butylfuran-2-yl)octanoylcarnitine
8-(5-Butylfuran-2-yl)octanoylcarnitine is an acylcarnitine. More specifically, it is an 8-(5-butylfuran-2-yl)octanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 8-(5-Butylfuran-2-yl)octanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 8-(5-Butylfuran-2-yl)octanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
N-Linoleoyl Glutamic acid
N-linoleoyl glutamic acid, also known as N-linoleoyl glutamate belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Linoleic acid amide of Glutamic acid. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Linoleoyl Glutamic acid is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Linoleoyl Glutamic acid is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
3-N-Methylspiperone
D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists
Butaperazine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist
Methyl (2E)-2-(10,13-dimethyl-11-oxo-3-pyrrolidin-1-yl-2,7,8,9,12,14,15,16-octahydro-1H-cyclopenta[a]phenanthren-17-ylidene)acetate
C26H35NO3 (409.26168000000007)
(5Z,8Z,11Z,14Z)-N-(4-Hydroxy-2-methylphenyl)-5,8,11,14-eicosatetraenamide
VERATRAMINE
marineosin B
A macrocycle isolated from a marine sediment-derived actinomycete, Streptomyces sp. A stereoisomer of marineosin A, it exhibits cytotoxicity against colon tumour cell lines.
Laxiracemosin H
C26H35NO3 (409.26168000000007)
Laxiracemosin H is a terpene alkaloid with a tirucallane skeleton isolated from Dysoxylum lenticellatum. It has a role as a metabolite and a plant metabolite. It is a terpene alkaloid, a tetracyclic triterpenoid, a cyclic terpene ketone and a member of maleimides. A terpene alkaloid with a tirucallane skeleton isolated from Dysoxylum lenticellatum.
Marineosin A
A macrocycle isolated from a marine sediment-derived actinomycete, Streptomyces sp. It exhibits cytotoxicity against colon tumour cell lines.
Severin
C25H31NO4 (409.22529660000004)
Milipertine
C24H31N3O3 (409.23652960000004)
C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist
4-(N-Boc-phenylaminomethyl)benzeneboronic acid pinacol ester
4-dodecyl-4-ethylmorpholinium ethyl sulphate
C20H43NO5S (409.2861788000001)
n-Butyl methacrylate, acrylonitrile, n-butyl acrylate, methacrylic acid polymer
C22H35NO6 (409.24642500000004)
(S)-2-[Diphenyl[[trisisopropylsilyl]oxy]methyl]pyrrolidine
bis(2-ethylhexyl) hydrogen phosphate, compound with morpholine (1:1)
C20H44NO5P (409.29569440000006)
(R,E)-ethyl 5-([1,1-biphenyl]-4-yl)-4-((tert-butoxycarbonyl)amino)-2-methylpent-2-enoate
C25H31NO4 (409.22529660000004)
5-[3-(tert-butyl)-1-(3-methylbenzyl)-1h-pyrazol-5-yl]-4-cyclohexyl-4h-1,2,4-triazole-3-thiol
C23H31N5S (409.23000460000003)
Onalespib
C24H31N3O3 (409.23652960000004)
C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor
Butaperazine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist
(5E,8E,11E,14E)-N-(4-hydroxy-2-methylphenyl)icosa-5,8,11,14-tetraenamide
5-(3,4-Dimethyl-5-pentylfuran-2-yl)pentanoylcarnitine
7-(3,4-Dimethyl-5-propylfuran-2-yl)heptanoylcarnitine
methyl (17Z)-11-oxo-3-(1-pyrrolidinyl)pregna-3,5,17-trien-21-oate
C26H35NO3 (409.26168000000007)
Pentadeca-3,6,9-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
Pentadeca-4,6,8-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
Pentadeca-5,7,9-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
Pentadeca-3,5,7-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
Pentadeca-5,8,11-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
Pentadeca-9,11,13-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
Pentadeca-7,10,13-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
(3E,5Z,11Z)-Pentadeca-3,5,11-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
(2E,6E,10E)-Pentadeca-2,6,10-trienedioylcarnitine
C22H35NO6 (409.24642500000004)
(3S,4aR,6aR,12aR,12bS)-3-Hydroxy-4,4,6a,12b-tetramethyl-9-(pyridin-3-yl)-1,3,4,4a,5,6,6a,12,12a,12b-decahydrobenzo[f]pyrano[4,3-b]chromen-11(2H)-one
C25H31NO4 (409.22529660000004)
N-[2-(4-acetyl-1-piperazinyl)phenyl]-2-(5-methyl-2-propan-2-ylphenoxy)acetamide
C24H31N3O3 (409.23652960000004)
N-[1-[(cyclohexylamino)-oxomethyl]cyclohexyl]-N-(2-furanylmethyl)-2-pyridinecarboxamide
C24H31N3O3 (409.23652960000004)
(5R)-5-tert-butyl-1-[(3S)-3-[(4-methylphenyl)thio]-3-phenylpropyl]-2-azepanone
C26H35NOS (409.24392200000005)
7-cyclohexyl-3-(4-morpholinyl)-1-(1-piperidinyl)-6,8-dihydro-5H-2,7-naphthyridine-4-carbonitrile
1-[2-[4-(4-methoxyphenyl)piperazin-1-yl]ethyl]-N-methyl-3,4-dihydro-1H-isochromene-6-carboxamide
C24H31N3O3 (409.23652960000004)
(2S)-5-amino-2-{[(9Z)-octadec-9-enoyl]amino}-5-oxopentanoate
C23H41N2O4- (409.30661660000004)
1alpha,16beta-Dimethoxy-4-(methoxymethyl)aconitane-6alpha,8,14alpha-triol
C22H35NO6 (409.24642500000004)
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2R,3S,6R)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]urea
N-[3-(dimethylamino)propyl]-2-[(2R,3R,6S)-3-[[[(3,5-dimethyl-4-isoxazolyl)amino]-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]acetamide
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2S,3R,6R)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]urea
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2S,3S,6S)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]urea
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2R,3R,6R)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]urea
N-[3-(dimethylamino)propyl]-2-[(2S,3R,6R)-3-[[[(3,5-dimethyl-4-isoxazolyl)amino]-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]acetamide
N-[3-(dimethylamino)propyl]-2-[(2S,3R,6S)-3-[[[(3,5-dimethyl-4-isoxazolyl)amino]-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]acetamide
N-[3-(dimethylamino)propyl]-2-[(2S,3S,6R)-3-[[[(3,5-dimethyl-4-isoxazolyl)amino]-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]acetamide
N-[3-(dimethylamino)propyl]-2-[(2S,3S,6S)-3-[[[(3,5-dimethyl-4-isoxazolyl)amino]-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]acetamide
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2R,3S,6S)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]urea
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2S,3S,6R)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]urea
N-[3-(dimethylamino)propyl]-2-[(2R,3S,6S)-3-[[[(3,5-dimethyl-4-isoxazolyl)amino]-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]acetamide
N-[3-(dimethylamino)propyl]-2-[(2R,3S,6R)-3-[[[(3,5-dimethyl-4-isoxazolyl)amino]-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]acetamide
[(1S)-1-[(4-fluorophenyl)methyl]-7-methoxy-1-spiro[1,2,3,9-tetrahydropyrido[3,4-b]indole-4,4-piperidine]yl]methanol
(3aR,4S,9bS)-8-(1-cyclohexenyl)-N-cyclopentyl-4-(hydroxymethyl)-5-methyl-3,3a,4,9b-tetrahydro-2H-pyrrolo[3,2-c]quinoline-1-carboxamide
(6S,7R,8S)-N-cyclopentyl-8-(hydroxymethyl)-7-[4-(3-methylbut-1-ynyl)phenyl]-2-oxo-1,4-diazabicyclo[4.2.0]octane-4-carboxamide
C24H31N3O3 (409.23652960000004)
(6R,7R,8R)-N-cyclopentyl-8-(hydroxymethyl)-7-[4-(3-methylbut-1-ynyl)phenyl]-2-oxo-1,4-diazabicyclo[4.2.0]octane-4-carboxamide
C24H31N3O3 (409.23652960000004)
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2S,3R,6S)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]urea
1-(3,5-dimethyl-4-isoxazolyl)-3-[(2R,3R,6S)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]urea
N-[3-(dimethylamino)propyl]-2-[(2R,3R,6R)-3-[[[(3,5-dimethyl-4-isoxazolyl)amino]-oxomethyl]amino]-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-6-yl]acetamide
(3aS,4R,9bR)-8-(1-cyclohexenyl)-N-cyclopentyl-4-(hydroxymethyl)-5-methyl-3,3a,4,9b-tetrahydro-2H-pyrrolo[3,2-c]quinoline-1-carboxamide
(6R,7S,8S)-N-cyclopentyl-8-(hydroxymethyl)-7-[4-(3-methylbut-1-ynyl)phenyl]-2-oxo-1,4-diazabicyclo[4.2.0]octane-4-carboxamide
C24H31N3O3 (409.23652960000004)
(6S,7R,8R)-N-cyclopentyl-8-(hydroxymethyl)-7-[4-(3-methylbut-1-ynyl)phenyl]-2-oxo-1,4-diazabicyclo[4.2.0]octane-4-carboxamide
C24H31N3O3 (409.23652960000004)
(6R,7R,8S)-N-cyclopentyl-8-(hydroxymethyl)-7-[4-(3-methylbut-1-ynyl)phenyl]-2-oxo-1,4-diazabicyclo[4.2.0]octane-4-carboxamide
C24H31N3O3 (409.23652960000004)
(6S,7S,8S)-N-cyclopentyl-8-(hydroxymethyl)-7-[4-(3-methylbut-1-ynyl)phenyl]-2-oxo-1,4-diazabicyclo[4.2.0]octane-4-carboxamide
C24H31N3O3 (409.23652960000004)
(6R,7S,8R)-N-cyclopentyl-8-(hydroxymethyl)-7-[4-(3-methylbut-1-ynyl)phenyl]-2-oxo-1,4-diazabicyclo[4.2.0]octane-4-carboxamide
C24H31N3O3 (409.23652960000004)
3-((2E,6E)-9-((S)-3,3-Dimethyloxiran-2-yl)-3,7-dimethylnona-2,6-dien-1-yl)-4-hydroxy-6-(pyridin-3-yl)-2H-pyran-2-one
C25H31NO4 (409.22529660000004)
2-aminoethyl [2-hydroxy-3-[(Z)-tetradec-9-enoxy]propyl] hydrogen phosphate
C19H40NO6P (409.2593110000001)
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (Z)-tridec-9-enoate
C18H36NO7P (409.22292760000005)
alpha-(4-Dimethylaminophenyl)-omega-(9-phenanthryl)octane
2-[hydroxy-[(E)-3-hydroxy-2-(propanoylamino)dec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-(butanoylamino)-3-hydroxynon-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-acetamido-3-hydroxyundec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-(pentanoylamino)oct-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
3-N-Methylspiperone
D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists
deacetylpyripyropene E
C25H31NO4 (409.22529660000004)
An organic heterotetracyclic compound that is (3S,4aR,6aR,12aR,12bS)-3-hydroxy-4,4,6a,12b-tetramethyl-1,3,4,4a,5,6,6a,12,12a,12b-decahydro-2H,11H-benzo[f]pyrano[4,3-b]chromen-11-one substituted by a pyridin-3-yl group at position 9 (the 3S,4aR,6aR,12aR,12bS stereoisomer).
N-deethylaconine
C22H35NO6 (409.24642500000004)
A diterpene alkaloid with formula C22H35NO6, originally isolated from Aconitum carmichaeli.
SPHP(20:0)
C20H44NO5P (409.29569440000006)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
NA-Taurine 20:5(5Z,8Z,11Z,14Z,17Z)
C22H35NO4S (409.2286670000001)
4-PPBP (maleate)
C25H31NO4 (409.22529660000004)
4-PPBP maleate is a potent σ 1 receptor ligand and agonist. 4-PPBP maleate is a non-competitive, selective NR1a/2B NMDA receptors (expressed in Xenopus oocytes) antagonist. 4-PPBP maleate provides neuroprotection[1][2][3].
16-acetyl-6-hydroxy-9-(2-methylbut-3-en-2-yl)-4-(2-methylpropyl)-2,5,16-triazatetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-5,10,12,14-tetraen-3-one
C24H31N3O3 (409.23652960000004)
(2s)-2-[(2s)-n,4-dimethyl-2-(methylamino)pentanamido]-3-phenyl-n-(2-phenylethyl)propanimidic acid
(1r,4s,7s,9r)-6-hydroxy-4-isopropyl-9-(2-methylbut-3-en-2-yl)-16-propanoyl-2,5,16-triazatetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-5,10,12,14-tetraen-3-one
C24H31N3O3 (409.23652960000004)
(2e)-n-[(1s,2s,4s,5s,6s,7r,8s)-1,7-dihydroxy-5-methoxy-10-oxo-3-oxatricyclo[4.3.1.0²,⁴]decan-8-yl]dodec-2-enimidic acid
C22H35NO6 (409.24642500000004)
4',6'-dihydroxy-11'-(1-hydroxypropyl)-3-methoxy-3',4-dimethyl-10'-azaspiro[furan-2,5'-tricyclo[8.4.0.0²,⁶]tetradecan]-5-one
C22H35NO6 (409.24642500000004)
(2r,3s,5r)-2-[(1r)-1-[(3s,6as,11as,11br)-3-hydroxy-10,11b-dimethyl-1h,2h,3h,4h,6h,6ah,11h,11ah-cyclohexa[a]fluoren-9-yl]ethyl]-5-methylpiperidin-3-ol
2-[(1r)-1-[(1r,3as,3bs,7s,9ar,9bs,11ar)-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethyl]-5-methylpyridin-3-ol
2-[(1r)-1-[(1r,3as,3bs,7s,9ar,9bs,11as)-7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethyl]-5-methylpyridin-3-ol
9-hydroxy-7-isopropyl-4,5,16,18,20-pentamethyl-8-azapentacyclo[10.8.0.0²,¹⁰.0⁶,¹⁰.0¹⁵,²⁰]icosa-3,8,13-trien-11-one
3-methoxy-5'-methyl-5-(1h-pyrrol-2-yl)-3,4-dihydro-4'-oxa-18'-azaspiro[pyrrole-2,3'-tricyclo[13.2.1.0²,⁷]octadecane]-1'(17'),15'-diene
11-ethyl-6-methoxy-13-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-3,4,8,9,16-pentol
C22H35NO6 (409.24642500000004)
n-[2-(4-{[(2e,4r)-5-[(2s)-3,3-dimethyloxiran-2-yl]-4-hydroxy-3-methylpent-2-en-1-yl]oxy}phenyl)ethyl]benzenecarboximidic acid
C25H31NO4 (409.22529660000004)
(1r,2s,3s,4s,5s,6s,8s,9r,10s,13r,16s,17r)-11-ethyl-6-methoxy-13-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-3,4,8,9,16-pentol
C22H35NO6 (409.24642500000004)
(4e,7s)-n-{2-[(4r,5r)-4-hydroxy-5-methyl-6-oxocyclohex-1-en-1-yl]-2-methoxyethyl}-7-methoxydodec-4-enimidic acid
(1s,2r,3r,4s,5s,6s,8r,9r,10s,13s,16s,17r)-11-ethyl-13-(hydroxymethyl)-6-methoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,8,9,16-tetrol
C22H35NO6 (409.24642500000004)
3-[(1r,3as,5ar,9ar,9br,11as)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-hydroxypyrrol-2-one
C26H35NO3 (409.26168000000007)
n-{5'-hydroxy-5-methoxy-3-oxo-7-oxaspiro[bicyclo[4.1.0]heptane-2,2'-oxolan]-4'-yl}dodec-2-enimidic acid
C22H35NO6 (409.24642500000004)
n-[2-(4-{[5-(3,3-dimethyloxiran-2-yl)-4-hydroxy-3-methylpent-2-en-1-yl]oxy}phenyl)ethyl]benzenecarboximidic acid
C25H31NO4 (409.22529660000004)
n-[2-(4-{[(2e)-5-(3,3-dimethyloxiran-2-yl)-4-hydroxy-3-methylpent-2-en-1-yl]oxy}phenyl)ethyl]benzenecarboximidic acid
C25H31NO4 (409.22529660000004)
2-(1-{7-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}ethyl)-5-methylpyridin-3-ol
(1r,4s,7s,9r)-16-acetyl-6-hydroxy-9-(2-methylbut-3-en-2-yl)-4-(2-methylpropyl)-2,5,16-triazatetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-5,10,12,14-tetraen-3-one
C24H31N3O3 (409.23652960000004)
(1s,2r,3r,4s,5s,6s,8r,9s,10s,13r,16s,17r,18r)-11-ethyl-6-methoxy-13-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,8,9,16,18-pentol
C22H35NO6 (409.24642500000004)
(2s,3r,5s)-2-[(1r)-1-[(3s,6ar,11as,11br)-3-hydroxy-10,11b-dimethyl-1h,2h,3h,4h,6h,6ah,11h,11ah-cyclohexa[a]fluoren-9-yl]ethyl]-5-methylpiperidin-3-ol
(2r,2's,3s,5's,7's)-3-methoxy-5'-methyl-5-(1h-pyrrol-2-yl)-3,4-dihydro-4'-oxa-18'-azaspiro[pyrrole-2,3'-tricyclo[13.2.1.0²,⁷]octadecane]-1'(17'),15'-diene
(1'r,2s,2's,3'r,4'r,6'r,11's)-4',6'-dihydroxy-11'-[(1s)-1-hydroxypropyl]-3-methoxy-3',4-dimethyl-10'-azaspiro[furan-2,5'-tricyclo[8.4.0.0²,⁶]tetradecan]-5-one
C22H35NO6 (409.24642500000004)
3-[(1s,2r,4as,4bs,7s,8r,8as,10as)-7-hydroxy-1,2,4a,8,8a-pentamethyl-decahydro-2h-phenanthren-1-yl]-1h-indol-6-ol
(1r,2s,3s,4s,5r,6s,8s,9s,10r,13s,16s,17s)-11-ethyl-4,6-dimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-3,8,13,16-tetrol
C22H35NO6 (409.24642500000004)
11-ethyl-13-(hydroxymethyl)-6-methoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,8,9,16-tetrol
C22H35NO6 (409.24642500000004)
n-[2-(6-hydroxy-3-methyl-2-oxocyclohex-3-en-1-yl)-2-methoxyethyl]-7-methoxydodec-4-enimidic acid
n-[2-(4-hydroxy-5-methyl-6-oxocyclohex-1-en-1-yl)-2-methoxyethyl]-7-methoxydodec-4-enimidic acid
methyl (2z,4r,5s,6e)-3,5-dimethoxy-4-methyl-7-[2-(6-methylheptyl)-1,3-thiazol-4-yl]hepta-2,6-dienoate
C22H35NO4S (409.2286670000001)
(4e,7r)-n-[(2r)-2-[(1r,6r)-6-hydroxy-3-methyl-2-oxocyclohex-3-en-1-yl]-2-methoxyethyl]-7-methoxydodec-4-enimidic acid
4-[(1r,3as,7r,9ar,9br,11as)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-1h-pyrrole-2-carbaldehyde
6-hydroxy-4-isopropyl-9-(2-methylbut-3-en-2-yl)-16-propanoyl-2,5,16-triazatetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-5,10,12,14-tetraen-3-one
C24H31N3O3 (409.23652960000004)
(4e,7s)-n-[(2s)-2-[(1s,6s)-6-hydroxy-3-methyl-2-oxocyclohex-3-en-1-yl]-2-methoxyethyl]-7-methoxydodec-4-enimidic acid
n-[(1s,2s,4s,5s,6s,7r,8s)-1,7-dihydroxy-5-methoxy-10-oxo-3-oxatricyclo[4.3.1.0²,⁴]decan-8-yl]dodec-2-enimidic acid
C22H35NO6 (409.24642500000004)
(2e)-n-[(1s,2s,4's,5s,5'r,6s)-5'-hydroxy-5-methoxy-3-oxo-7-oxaspiro[bicyclo[4.1.0]heptane-2,2'-oxolan]-4'-yl]dodec-2-enimidic acid
C22H35NO6 (409.24642500000004)
(4e,7r)-n-[(2r)-2-[(1r,6s)-6-hydroxy-3-methyl-2-oxocyclohex-3-en-1-yl]-2-methoxyethyl]-7-methoxydodec-4-enimidic acid
3-{3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-5-hydroxypyrrol-2-one
C26H35NO3 (409.26168000000007)