Exact Mass: 403.3217

Exact Mass Matches: 403.3217

Found 116 metabolites which its exact mass value is equals to given mass value 403.3217, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Spergualin

Spergualin

C17H37N7O4 (403.2907)


D000970 - Antineoplastic Agents

   
   

N-Palmitoyl phenylalanine

(2S)-2-[(1-hydroxyhexadecylidene)amino]-3-phenylpropanoic acid

C25H41NO3 (403.3086)


N-palmitoyl phenylalanine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Palmitic acid amide of Phenylalanine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Palmitoyl phenylalanine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Palmitoyl phenylalanine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

3,11-Dihydroxytetradecanoylcarnitine

3-[(3,11-dihydroxytetradecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C21H41NO6 (403.2934)


3,11-Dihydroxytetradecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,11-Dihydroxytetradecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,11-Dihydroxytetradecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3,11-Dihydroxytetradecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,7-Dihydroxytetradecanoylcarnitine

3-[(3,7-dihydroxytetradecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C21H41NO6 (403.2934)


3,7-Dihydroxytetradecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,7-Dihydroxytetradecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,7-Dihydroxytetradecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3,7-Dihydroxytetradecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,13-Dihydroxytetradecanoylcarnitine

3-[(3,13-dihydroxytetradecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C21H41NO6 (403.2934)


3,13-Dihydroxytetradecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,13-Dihydroxytetradecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,13-Dihydroxytetradecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3,13-Dihydroxytetradecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,8-Dihydroxytetradecanoylcarnitine

3-[(3,8-dihydroxytetradecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C21H41NO6 (403.2934)


3,8-Dihydroxytetradecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,8-Dihydroxytetradecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,8-Dihydroxytetradecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3,8-Dihydroxytetradecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,4-Dihydroxytetradecanoylcarnitine

3-[(3,4-dihydroxytetradecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C21H41NO6 (403.2934)


3,4-Dihydroxytetradecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,4-Dihydroxytetradecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,4-Dihydroxytetradecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3,4-Dihydroxytetradecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,5-Dihydroxytetradecanoylcarnitine

3-[(3,5-dihydroxytetradecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C21H41NO6 (403.2934)


3,5-Dihydroxytetradecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,5-Dihydroxytetradecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,5-Dihydroxytetradecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3,5-Dihydroxytetradecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,10-Dihydroxytetradecanoylcarnitine

3-[(3,10-Dihydroxytetradecanoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C21H41NO6 (403.2934)


3,10-Dihydroxytetradecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,10-Dihydroxytetradecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,10-Dihydroxytetradecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3,10-Dihydroxytetradecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,12-Dihydroxytetradecanoylcarnitine

3-[(3,12-Dihydroxytetradecanoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C21H41NO6 (403.2934)


3,12-Dihydroxytetradecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,12-Dihydroxytetradecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,12-Dihydroxytetradecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3,12-Dihydroxytetradecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,6-Dihydroxytetradecanoylcarnitine

3-[(3,6-dihydroxytetradecanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C21H41NO6 (403.2934)


3,6-Dihydroxytetradecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,6-Dihydroxytetradecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,6-Dihydroxytetradecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3,6-Dihydroxytetradecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3,9-Dihydroxytetradecanoylcarnitine

3-[(3,9-Dihydroxytetradecanoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C21H41NO6 (403.2934)


3,9-Dihydroxytetradecanoylcarnitine is an acylcarnitine. More specifically, it is an 3,9-Dihydroxytetradecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,9-Dihydroxytetradecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3,9-Dihydroxytetradecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Arachidonoyl Valine

2-[(1-Hydroxyicosa-5,8,11,14-tetraen-1-ylidene)amino]-3-methylbutanoate

C25H41NO3 (403.3086)


N-arachidonoyl valine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Arachidonic acid amide of Valine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Arachidonoyl Valine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Arachidonoyl Valine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Eicosapentaenoyl Threonine

3-hydroxy-2-(icosa-5,8,11,14,17-pentaenamido)butanoic acid

C24H37NO4 (403.2722)


N-eicosapentaenoyl threonine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Eicosapentaenoic acid amide of Threonine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Eicosapentaenoyl Threonine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Eicosapentaenoyl Threonine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

Spergualin

N-[({4-[(3-aminopropyl)amino]butyl}-C-hydroxycarbonimidoyl)(hydroxy)methyl]-7-carbamimidamido-3-hydroxyheptanimidate

C17H37N7O4 (403.2907)


   

Dihydrotubingensin A

Dihydrotubingensin A

C28H37NO (403.2875)


   

2-amino-3,4,14-trihydroxy-2-hydroxymethyl-6-eicosenoic acid

2-amino-3,4,14-trihydroxy-2-hydroxymethyl-6-eicosenoic acid

C21H41NO6 (403.2934)


   
   

Mycestericin C

Mycestericin C

C21H41NO6 (403.2934)


   
   

N-Octadecanoylanthranilic acid

N-Octadecanoylanthranilic acid

C25H41NO3 (403.3086)


   

CB-25

N-cyclopropyl-11-(3-hydroxy-5-pentylphenoxy)-undecanamide

C25H41NO3 (403.3086)


   

daphnezomic acid

daphnezomic acid

C24H37NO4 (403.2722)


   
   
   

Holacetin-O-acetat

Holacetin-O-acetat

C25H41NO3 (403.3086)


   

Dihydrotubingensin B

Dihydrotubingensin B

C28H37NO (403.2875)


   
   

17-ketoeujindole|17-oxoeujindole

17-ketoeujindole|17-oxoeujindole

C28H37NO (403.2875)


   

8,21-dehydro-17-hydroxyeujindole

8,21-dehydro-17-hydroxyeujindole

C28H37NO (403.2875)


   

(10R)-10-hydroxy-N-phenethyloctadecanamide

(10R)-10-hydroxy-N-phenethyloctadecanamide

C26H45NO2 (403.345)


   

2-(Octadecanoylamino)benzoic acid

2-(Octadecanoylamino)benzoic acid

C25H41NO3 (403.3086)


   

hemsleyaconitine G|rel-(2R,3S,4aR,8S,11S)-13-ethyl-1,3,4,5,6,8,9,10,11,11b-decahydro-3,11-dimethoxy-8-(methoxymethyl)-2H-2,4a-methano-8,11a-(methanoiminomethano)dibenzo[a,c][7]annulen-15-one

hemsleyaconitine G|rel-(2R,3S,4aR,8S,11S)-13-ethyl-1,3,4,5,6,8,9,10,11,11b-decahydro-3,11-dimethoxy-8-(methoxymethyl)-2H-2,4a-methano-8,11a-(methanoiminomethano)dibenzo[a,c][7]annulen-15-one

C24H37NO4 (403.2722)


   

2-(14-methylpentadecanoylamino)-3-phenylpropanoic acid

NCGC00380823-01!2-(14-methylpentadecanoylamino)-3-phenylpropanoic acid

C25H41NO3 (403.3086)


   

C24H37NO4_(7E)-11-Hydroxy-3-isobutyl-12-methoxy-4,5,8-trimethyl-2,3,3a,4,6a,9,10,11,12,13-decahydrocyclodeca[d]isoindole-1,14-dione

NCGC00380188-01_C24H37NO4_(7E)-11-Hydroxy-3-isobutyl-12-methoxy-4,5,8-trimethyl-2,3,3a,4,6a,9,10,11,12,13-decahydrocyclodeca[d]isoindole-1,14-dione

C24H37NO4 (403.2722)


   

2-(14-methylpentadecanoylamino)-3-phenylpropanoic acid [IIN-based on: CCMSLIB00000845077]

NCGC00380823-01!2-(14-methylpentadecanoylamino)-3-phenylpropanoic acid [IIN-based on: CCMSLIB00000845077]

C25H41NO3 (403.3086)


   

2-(14-methylpentadecanoylamino)-3-phenylpropanoic acid [IIN-based: Match]

NCGC00380823-01!2-(14-methylpentadecanoylamino)-3-phenylpropanoic acid [IIN-based: Match]

C25H41NO3 (403.3086)


   

N-(16,16-dimethy-5Z,8Z,11Z,14Z-docosatetraenoyl)-ethanolamine

N-(16,16-dimethy-5Z,8Z,11Z,14Z-docosatetraenoyl)-ethanolamine

C26H45NO2 (403.345)


   

N-(5Z,8Z,11Z,14Z-tetracosatetraenoyl)-ethanolamine

N-(5Z,8Z,11Z,14Z-tetracosatetraenoyl)-ethanolamine

C26H45NO2 (403.345)


   

N-(17,17-dimethyl-5Z,8Z,11Z,14Z-docosatetraenoyl)-ethanolamine

N-(17,17-dimethyl-5Z,8Z,11Z,14Z-docosatetraenoyl)-ethanolamine

C26H45NO2 (403.345)


   

N-palmitoyl phenylalanine

N-Hexadecanoyl-L-phenlyalanine

C25H41NO3 (403.3086)


   

(16,16-dimethyldocosa-cis-5,8,11,14-tetraenoyl) ethanolamine

N-(16,16-dimethy-5Z,8Z,11Z,14Z-docosatetraenoyl)-ethanolamine

C26H45NO2 (403.345)


   

5,8,11,14-all-cis-tetracosanoylethanolamide

N-(5Z,8Z,11Z,14Z-tetracosatetraenoyl)-ethanolamine

C26H45NO2 (403.345)


   

17,17-dimethyl-5,8,11,14-all-cis-docosatetraenoylethanolamide

N-(17,17-dimethyl-5Z,8Z,11Z,14Z-docosatetraenoyl)-ethanolamine

C26H45NO2 (403.345)


   

NA 25:5;O2

N-Hexadecanoyl-L-phenlyalanine

C25H41NO3 (403.3086)


   

NAT 19:1

N-(9Z-nonadecenoyl) taurine

C21H41NO4S (403.2756)


   

NAE 24:4

N-(17,17-dimethyl-5Z,8Z,11Z,14Z-docosatetraenoyl)-ethanolamine

C26H45NO2 (403.345)


   

2-Cyano-N-dodecyl-4-(3-ethyl-4,4-dimethyl-2-oxazolidinylidene)-2-butenamide

2-Cyano-N-dodecyl-4-(3-ethyl-4,4-dimethyl-2-oxazolidinylidene)-2-butenamide

C24H41N3O2 (403.3199)


   

BENZYLDIMETHYLTETRADECYLAMMONIUM CHLORI&

BENZYLDIMETHYLTETRADECYLAMMONIUM CHLORI&

C23H46ClNO2 (403.3217)


   

N-Hexadecanoyl-D-phenylalanine

N-Hexadecanoyl-D-phenylalanine

C25H41NO3 (403.3086)


   

Ethyldimethyl(9-Octadecenyl)Ammonium Bromide

Ethyldimethyl(9-Octadecenyl)Ammonium Bromide

C22H46BrN (403.2813)


   
   

3,7-Dihydroxytetradecanoylcarnitine

3,7-Dihydroxytetradecanoylcarnitine

C21H41NO6 (403.2934)


   

3,8-Dihydroxytetradecanoylcarnitine

3,8-Dihydroxytetradecanoylcarnitine

C21H41NO6 (403.2934)


   

3,4-Dihydroxytetradecanoylcarnitine

3,4-Dihydroxytetradecanoylcarnitine

C21H41NO6 (403.2934)


   

3,5-Dihydroxytetradecanoylcarnitine

3,5-Dihydroxytetradecanoylcarnitine

C21H41NO6 (403.2934)


   

3,6-Dihydroxytetradecanoylcarnitine

3,6-Dihydroxytetradecanoylcarnitine

C21H41NO6 (403.2934)


   

3,9-Dihydroxytetradecanoylcarnitine

3,9-Dihydroxytetradecanoylcarnitine

C21H41NO6 (403.2934)


   

3,11-Dihydroxytetradecanoylcarnitine

3,11-Dihydroxytetradecanoylcarnitine

C21H41NO6 (403.2934)


   

3,13-Dihydroxytetradecanoylcarnitine

3,13-Dihydroxytetradecanoylcarnitine

C21H41NO6 (403.2934)


   

3,10-Dihydroxytetradecanoylcarnitine

3,10-Dihydroxytetradecanoylcarnitine

C21H41NO6 (403.2934)


   

3,12-Dihydroxytetradecanoylcarnitine

3,12-Dihydroxytetradecanoylcarnitine

C21H41NO6 (403.2934)


   

N-Arachidonoyl Valine

N-Arachidonoyl Valine

C25H41NO3 (403.3086)


   

N-Eicosapentaenoyl Threonine

N-Eicosapentaenoyl Threonine

C24H37NO4 (403.2722)


   

(2R,3S)-2-[[cyclopropylmethyl(methyl)amino]methyl]-9-(dimethylamino)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2,3,4,7-tetrahydro-1,5-benzoxazonin-6-one

(2R,3S)-2-[[cyclopropylmethyl(methyl)amino]methyl]-9-(dimethylamino)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2,3,4,7-tetrahydro-1,5-benzoxazonin-6-one

C23H37N3O3 (403.2835)


   

(2R,3R)-2-[[cyclopropylmethyl(methyl)amino]methyl]-9-(dimethylamino)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2,3,4,7-tetrahydro-1,5-benzoxazonin-6-one

(2R,3R)-2-[[cyclopropylmethyl(methyl)amino]methyl]-9-(dimethylamino)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2,3,4,7-tetrahydro-1,5-benzoxazonin-6-one

C23H37N3O3 (403.2835)


   

(2S,3S)-2-[[cyclopropylmethyl(methyl)amino]methyl]-9-(dimethylamino)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2,3,4,7-tetrahydro-1,5-benzoxazonin-6-one

(2S,3S)-2-[[cyclopropylmethyl(methyl)amino]methyl]-9-(dimethylamino)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2,3,4,7-tetrahydro-1,5-benzoxazonin-6-one

C23H37N3O3 (403.2835)


   

(2R,3R)-2-[[cyclopropylmethyl(methyl)amino]methyl]-9-(dimethylamino)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2,3,4,7-tetrahydro-1,5-benzoxazonin-6-one

(2R,3R)-2-[[cyclopropylmethyl(methyl)amino]methyl]-9-(dimethylamino)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2,3,4,7-tetrahydro-1,5-benzoxazonin-6-one

C23H37N3O3 (403.2835)


   

(2S,3S)-2-[[cyclopropylmethyl(methyl)amino]methyl]-9-(dimethylamino)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2,3,4,7-tetrahydro-1,5-benzoxazonin-6-one

(2S,3S)-2-[[cyclopropylmethyl(methyl)amino]methyl]-9-(dimethylamino)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2,3,4,7-tetrahydro-1,5-benzoxazonin-6-one

C23H37N3O3 (403.2835)


   
   

(4Z,7Z,10Z,13Z)-N-[(E)-1,3-dihydroxynon-4-en-2-yl]hexadeca-4,7,10,13-tetraenamide

(4Z,7Z,10Z,13Z)-N-[(E)-1,3-dihydroxynon-4-en-2-yl]hexadeca-4,7,10,13-tetraenamide

C25H41NO3 (403.3086)


   

Cer 9:0;3O/13:0;(2OH)

Cer 9:0;3O/13:0;(2OH)

C22H45NO5 (403.3298)


   

Cer 8:0;3O/14:0;(2OH)

Cer 8:0;3O/14:0;(2OH)

C22H45NO5 (403.3298)


   

Cer 10:0;3O/12:0;(2OH)

Cer 10:0;3O/12:0;(2OH)

C22H45NO5 (403.3298)


   

2-(14-Methylpentadecanoylamino)-3-phenylpropanoic acid

2-(14-Methylpentadecanoylamino)-3-phenylpropanoic acid

C25H41NO3 (403.3086)


   

(12Z,15Z,18Z,21Z)-N-(2-hydroxyethyl)tetracosa-12,15,18,21-tetraenamide

(12Z,15Z,18Z,21Z)-N-(2-hydroxyethyl)tetracosa-12,15,18,21-tetraenamide

C26H45NO2 (403.345)


   

NA-Ala 22:4(7Z,10Z,13Z,16Z)

NA-Ala 22:4(7Z,10Z,13Z,16Z)

C25H41NO3 (403.3086)


   

NA-Dopamine 17:1(9Z)

NA-Dopamine 17:1(9Z)

C25H41NO3 (403.3086)


   

NA-His 17:2(9Z,12Z)

NA-His 17:2(9Z,12Z)

C23H37N3O3 (403.2835)


   

NA-Histamine 20:1(11Z)

NA-Histamine 20:1(11Z)

C25H45N3O (403.3562)


   
   
   

NA-Taurine 19:1(9Z)

NA-Taurine 19:1(9Z)

C21H41NO4S (403.2756)


   

NA-Thr 20:5(5Z,8Z,11Z,14Z,17Z)

NA-Thr 20:5(5Z,8Z,11Z,14Z,17Z)

C24H37NO4 (403.2722)


   

NA-Tyr 15:1(9Z)

NA-Tyr 15:1(9Z)

C24H37NO4 (403.2722)


   

NA-Val 20:4(5Z,8Z,11Z,14Z)

NA-Val 20:4(5Z,8Z,11Z,14Z)

C25H41NO3 (403.3086)


   
   

ST 22:2;O2;Gly

ST 22:2;O2;Gly

C24H37NO4 (403.2722)


   

methyl 6-hydroxy-6-isopropyl-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylate

methyl 6-hydroxy-6-isopropyl-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylate

C24H37NO4 (403.2722)


   

(1s,2s,4r,5s,7r,12s,16s)-14-ethyl-5,16-dimethoxy-12-(methoxymethyl)-14-azapentacyclo[10.3.3.1⁴,⁷.0¹,¹¹.0²,⁷]nonadec-10-en-19-one

(1s,2s,4r,5s,7r,12s,16s)-14-ethyl-5,16-dimethoxy-12-(methoxymethyl)-14-azapentacyclo[10.3.3.1⁴,⁷.0¹,¹¹.0²,⁷]nonadec-10-en-19-one

C24H37NO4 (403.2722)


   

(1's,3r,5'r,6s,11's,12's)-6-isopropyl-6-methoxy-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylic acid

(1's,3r,5'r,6s,11's,12's)-6-isopropyl-6-methoxy-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylic acid

C24H37NO4 (403.2722)


   

11-ethyl-4,6-dimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadec-7-en-16-ol

11-ethyl-4,6-dimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadec-7-en-16-ol

C24H37NO4 (403.2722)


   

(1'r,3r,5's,6r,11'r,12'r)-6-isopropyl-6-methoxy-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylic acid

(1'r,3r,5's,6r,11'r,12'r)-6-isopropyl-6-methoxy-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylic acid

C24H37NO4 (403.2722)


   

methyl 6-ethyl-6-methoxy-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylate

methyl 6-ethyl-6-methoxy-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylate

C24H37NO4 (403.2722)


   

methyl (1'r,3r,5's,6r,11'r,12'r)-6-hydroxy-6-isopropyl-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylate

methyl (1'r,3r,5's,6r,11'r,12'r)-6-hydroxy-6-isopropyl-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylate

C24H37NO4 (403.2722)


   

(2r,3r,4s,7r,8s,12r,15s)-4,7,8,16,16-pentamethyl-22-azahexacyclo[15.6.1.0²,¹⁵.0³,¹².0⁷,¹².0²¹,²⁴]tetracosa-1(23),17(24),18,20-tetraen-11-one

(2r,3r,4s,7r,8s,12r,15s)-4,7,8,16,16-pentamethyl-22-azahexacyclo[15.6.1.0²,¹⁵.0³,¹².0⁷,¹².0²¹,²⁴]tetracosa-1(23),17(24),18,20-tetraen-11-one

C28H37NO (403.2875)


   

n-{1-[7-(acetyloxy)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]ethyl}ethanimidic acid

n-{1-[7-(acetyloxy)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]ethyl}ethanimidic acid

C25H41NO3 (403.3086)


   

1,2,9-trimethyl-7-(2-methylprop-1-en-1-yl)-6-oxa-22-azahexacyclo[11.10.0.0²,¹⁰.0⁵,⁹.0¹⁵,²³.0¹⁶,²¹]tricosa-15(23),16,18,20-tetraene

1,2,9-trimethyl-7-(2-methylprop-1-en-1-yl)-6-oxa-22-azahexacyclo[11.10.0.0²,¹⁰.0⁵,⁹.0¹⁵,²³.0¹⁶,²¹]tricosa-15(23),16,18,20-tetraene

C28H37NO (403.2875)


   

(1s,2r,3s,4s,5r,6s,9r,10r,13s,16r,17r)-11-ethyl-4,6-dimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadec-7-en-16-ol

(1s,2r,3s,4s,5r,6s,9r,10r,13s,16r,17r)-11-ethyl-4,6-dimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadec-7-en-16-ol

C24H37NO4 (403.2722)


   

methyl (1'r,3r,5's,6s,11's,12's)-6-ethyl-6-methoxy-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylate

methyl (1'r,3r,5's,6s,11's,12's)-6-ethyl-6-methoxy-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylate

C24H37NO4 (403.2722)


   

15-isopropyl-18,19-dimethyl-11-azahexacyclo[13.7.2.0¹,¹⁸.0²,¹⁴.0⁴,¹².0⁵,¹⁰]tetracosa-2(14),4(12),5,7,9-pentaen-22-ol

15-isopropyl-18,19-dimethyl-11-azahexacyclo[13.7.2.0¹,¹⁸.0²,¹⁴.0⁴,¹².0⁵,¹⁰]tetracosa-2(14),4(12),5,7,9-pentaen-22-ol

C28H37NO (403.2875)


   

n-[(1s)-1-[(1r,3as,3br,5as,7s,9as,9bs,11as)-7-(acetyloxy)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]ethyl]ethanimidic acid

n-[(1s)-1-[(1r,3as,3br,5as,7s,9as,9bs,11as)-7-(acetyloxy)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthren-1-yl]ethyl]ethanimidic acid

C25H41NO3 (403.3086)


   

(1s,2s,5s,7r,9s,10r,13s)-1,2,9-trimethyl-7-(2-methylprop-1-en-1-yl)-6-oxa-22-azahexacyclo[11.10.0.0²,¹⁰.0⁵,⁹.0¹⁵,²³.0¹⁶,²¹]tricosa-15(23),16,18,20-tetraene

(1s,2s,5s,7r,9s,10r,13s)-1,2,9-trimethyl-7-(2-methylprop-1-en-1-yl)-6-oxa-22-azahexacyclo[11.10.0.0²,¹⁰.0⁵,⁹.0¹⁵,²³.0¹⁶,²¹]tricosa-15(23),16,18,20-tetraene

C28H37NO (403.2875)


   

(1s,15r,18s,19r,22s)-15-isopropyl-18,19-dimethyl-11-azahexacyclo[13.7.2.0¹,¹⁸.0²,¹⁴.0⁴,¹².0⁵,¹⁰]tetracosa-2(14),4(12),5,7,9-pentaen-22-ol

(1s,15r,18s,19r,22s)-15-isopropyl-18,19-dimethyl-11-azahexacyclo[13.7.2.0¹,¹⁸.0²,¹⁴.0⁴,¹².0⁵,¹⁰]tetracosa-2(14),4(12),5,7,9-pentaen-22-ol

C28H37NO (403.2875)


   

methyl (1's,3r,5'r,6r,11'r,12'r)-6-hydroxy-6-isopropyl-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylate

methyl (1's,3r,5'r,6r,11'r,12'r)-6-hydroxy-6-isopropyl-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylate

C24H37NO4 (403.2722)


   

methyl (1's,3s,5'r,6r,11'r,12'r)-6-hydroxy-6-isopropyl-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylate

methyl (1's,3s,5'r,6r,11'r,12'r)-6-hydroxy-6-isopropyl-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylate

C24H37NO4 (403.2722)


   

4,7,8,16,16-pentamethyl-22-azahexacyclo[15.6.1.0²,¹⁵.0³,¹².0⁷,¹².0²¹,²⁴]tetracosa-1(23),17(24),18,20-tetraen-11-one

4,7,8,16,16-pentamethyl-22-azahexacyclo[15.6.1.0²,¹⁵.0³,¹².0⁷,¹².0²¹,²⁴]tetracosa-1(23),17(24),18,20-tetraen-11-one

C28H37NO (403.2875)


   

4,4a-dimethyl-13b-(4-methylpent-3-en-1-yl)-1h,2h,3h,4h,5h,6h,7h,8h,13h-naphtho[2,1-b]carbazol-1-ol

4,4a-dimethyl-13b-(4-methylpent-3-en-1-yl)-1h,2h,3h,4h,5h,6h,7h,8h,13h-naphtho[2,1-b]carbazol-1-ol

C28H37NO (403.2875)


   

(1s,4r,4as,13br)-4,4a-dimethyl-13b-(4-methylpent-3-en-1-yl)-1h,2h,3h,4h,5h,6h,7h,8h,13h-naphtho[2,1-b]carbazol-1-ol

(1s,4r,4as,13br)-4,4a-dimethyl-13b-(4-methylpent-3-en-1-yl)-1h,2h,3h,4h,5h,6h,7h,8h,13h-naphtho[2,1-b]carbazol-1-ol

C28H37NO (403.2875)


   

methyl (1'r,3r,5's,6s,11'r,12'r)-6-ethyl-6-methoxy-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylate

methyl (1'r,3r,5's,6s,11'r,12'r)-6-ethyl-6-methoxy-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylate

C24H37NO4 (403.2722)


   

2-amino-n-[4-amino-3-({3-amino-6-[(ethylamino)methyl]oxan-2-yl}oxy)-2-hydroxy-6-methoxycyclohexyl]-n-methylacetamide

2-amino-n-[4-amino-3-({3-amino-6-[(ethylamino)methyl]oxan-2-yl}oxy)-2-hydroxy-6-methoxycyclohexyl]-n-methylacetamide

C18H37N5O5 (403.2795)


   

6-isopropyl-6-methoxy-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylic acid

6-isopropyl-6-methoxy-3'-methyl-3'-azaspiro[oxane-3,15'-tetracyclo[6.5.1.1¹,⁵.0¹¹,¹⁴]pentadecan]-8'(14')-ene-12'-carboxylic acid

C24H37NO4 (403.2722)


   

14-ethyl-5,16-dimethoxy-12-(methoxymethyl)-14-azapentacyclo[10.3.3.1⁴,⁷.0¹,¹¹.0²,⁷]nonadec-10-en-19-one

14-ethyl-5,16-dimethoxy-12-(methoxymethyl)-14-azapentacyclo[10.3.3.1⁴,⁷.0¹,¹¹.0²,⁷]nonadec-10-en-19-one

C24H37NO4 (403.2722)


   

1-[(1s,2r,3r,4s,5s,6s,8r,9s,10r,13r,16s,17r)-11-ethyl-8,16-dihydroxy-6-methoxy-13-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl]ethanone

1-[(1s,2r,3r,4s,5s,6s,8r,9s,10r,13r,16s,17r)-11-ethyl-8,16-dihydroxy-6-methoxy-13-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl]ethanone

C24H37NO4 (403.2722)