Exact Mass: 397.2729

Exact Mass Matches: 397.2729

Found 191 metabolites which its exact mass value is equals to given mass value 397.2729, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

3,4-dihydroxy-2-methyl-4-farnesyl-3H-quinolin-1-ium-1-olate

3,4-Dihydroxy-2-methy-4-[(2E,6E)-farnesyl]-3,4-dihydroquinoline 1-oxide

C25H35NO3 (397.2617)


A member of the class of quinoline N-oxides that is 2-methyl-1-oxo-4-3,4-dihydroquinoline-3,4-diol carrying an additional (2E,6E)-farnesyl group at position 4.

   

trans-Hexadec-2-enoyl carnitine

3-[(2E)-hexadec-2-enoyloxy]-4-(trimethylazaniumyl)butanoate

C23H43NO4 (397.3192)


trans-Hexadec-2-enoyl carnitine is an acylcarnitine. Numerous disorders have been described that lead to disturbances in energy production and in intermediary metabolism in the organism which are characterized by the production and excretion of unusual acylcarnitines. A mutation in the gene coding for carnitine-acylcarnitine translocase or the OCTN2 transporter aetiologically causes a carnitine deficiency that results in poor intestinal absorption of dietary L-carnitine, its impaired reabsorption by the kidney and, consequently, in increased urinary loss of L-carnitine. Determination of the qualitative pattern of acylcarnitines can be of diagnostic and therapeutic importance. The betaine structure of carnitine requires special analytical procedures for recording. The ionic nature of L-carnitine causes a high water solubility which decreases with increasing chain length of the ester group in the acylcarnitines. Therefore, the distribution of L-carnitine and acylcarnitines in various organs is defined by their function and their physico-chemical properties as well. High performance liquid chromatography (HPLC) permits screening for free and total carnitine, as well as complete quantitative acylcarnitine determination, including the long-chain acylcarnitine profile. (PMID: 17508264, Monatshefte fuer Chemie (2005), 136(8), 1279-1291., Int J Mass Spectrom. 1999;188:39-52.) [HMDB] trans-Hexadec-2-enoyl carnitine is an acylcarnitine. Numerous disorders have been described that lead to disturbances in energy production and in intermediary metabolism in the organism which are characterized by the production and excretion of unusual acylcarnitines. A mutation in the gene coding for carnitine-acylcarnitine translocase or the OCTN2 transporter aetiologically causes a carnitine deficiency that results in poor intestinal absorption of dietary L-carnitine, its impaired reabsorption by the kidney and, consequently, in increased urinary loss of L-carnitine. Determination of the qualitative pattern of acylcarnitines can be of diagnostic and therapeutic importance. The betaine structure of carnitine requires special analytical procedures for recording. The ionic nature of L-carnitine causes a high water solubility which decreases with increasing chain length of the ester group in the acylcarnitines. Therefore, the distribution of L-carnitine and acylcarnitines in various organs is defined by their function and their physico-chemical properties as well. High performance liquid chromatography (HPLC) permits screening for free and total carnitine, as well as complete quantitative acylcarnitine determination, including the long-chain acylcarnitine profile. (PMID: 17508264, Monatshefte fuer Chemie (2005), 136(8), 1279-1291., Int J Mass Spectrom. 1999;188:39-52.).

   

Phytosphingosine-1-P

{[(2R,3R,4R)-2-amino-3,4-dihydroxyoctadecyl]oxy}phosphonic acid

C18H40NO6P (397.2593)


Phytosphingosine-1-P is an intermediate in sphingolipid metabolism pathway. It is the enzymatic oxidation product of 4-hydroxysphinganine. Sphingolipids are essential components of the plasma membrane in all eukaryotic cells. S. cerevisiae cells make three complex sphingolipids: inositol-phosphoceramide (IPC), mannose-inositol-phosphoceramide (MIPC), and mannosyl-diinositol-phosphorylceramide (M(IP)2C) [ Dickson02 ]. In the yeast plasma membrane sphingolipids concentrate with ergosterol to form lipid rafts, specialized membrane microdomains implicated in a variety of cellular processes, including sorting of membrane proteins and lipids, as well as organizing and regulating signaling cascades [ Bagnat02 ]. Intermediates in sphingolipid biosynthesis have been shown to play important roles as signaling molecules and growth regulators. Sphingolipid long chain bases (LCBs), dihydrosphingosine (DHS) and phytosphingosine (PHS), have been implicated as secondary messengers in signaling pathways that regulate heat stress response. Other intermediates, phytoceramide and long-chain base phosphates (LCBPs), have been shown to be components of tightly-controlled ceramide/LCBP rheostat, which regulates cell growth. Since phosphoinositol-containing sphingolipids are unique to fungi, the sphingolipid biosynthesis pathway is considered a target for antifungal drugs. Phytosphingosine-1-p, also known as phs-1-phosphate, is a member of the class of compounds known as phosphosphingolipids. Phosphosphingolipids are sphingolipids with a structure based on a sphingoid base that is attached to a phosphate head group. They differ from phosphonospingolipids which have a phosphonate head group. Phytosphingosine-1-p is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Phytosphingosine-1-p can be found in a number of food items such as dandelion, common verbena, turmeric, and fennel, which makes phytosphingosine-1-p a potential biomarker for the consumption of these food products.

   

9-Hexadecenoylcarnitine

(3R)-3-[(9Z)-Hexadec-9-enoyloxy]-4-(trimethylazaniumyl)butanoic acid

C23H43NO4 (397.3192)


9-Hexadecenoylcarnitine is an acylcarnitine. More specifically, it is an 9-hexadecenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 9-Hexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 9-hexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 9-hexadecenoylcarnitine is elevated in the blood or plasma of individuals with children obesity (PMID: 23108202). It is also decreased in the blood or plasma of individuals with familial Mediterranean fever (PMID: 29900937). 9-Hexadecenoylcarnitine is found to be associated with glutaric aciduria II, which is an inborn error of metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane.  Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

PGF2a ethanolamide

(5E)-7-[(1R,2R,3R,5S)-3,5-Dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-N-(2-hydroxyethyl)hept-5-enimidate

C22H39NO5 (397.2828)


PGF2a ethanolamide is a N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249) [HMDB] PGF2a ethanolamide is a N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249).

   

Drotaverine

(1Z)-1-[(3,4-diethoxyphenyl)methylidene]-6,7-diethoxy-1,2,3,4-tetrahydroisoquinoline

C24H31NO4 (397.2253)


Drotaverine (INN, also known as drotaverin) is an antispasmodic drug, structurally related to papaverine. Drotaverine is a selective inhibitor of phosphodiesterase 4, and has no anticholinergic effects. Drotaverine has been shown to possess dose-dependant analgesic effects in animal models. One small study has shown drotaverine to be eliminated mainly non-renally. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AD - Papaverine and derivatives C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

O-Palmitoleoylcarnitine

3-[(9Z)-Hexadec-9-enoyloxy]-4-(trimethylammonio)butanoic acid

C23H43NO4 (397.3192)


O-Palmitoleoylcarnitine is an acylcarnitine. More specifically, it is an palmitoleic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. O-Palmitoleoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine O-Palmitoleoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular O-Palmitoleoylcarnitine is elevated in the blood or plasma of individuals with children obesity (PMID: 23108202). It is also decreased in the blood or plasma of individuals with familial Mediterranean fever (PMID: 29900937). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-9,11-dienedioylcarnitine

3-[(13-carboxytrideca-9,11-dienoyl)oxy]-4-(trimethylazaniumyl)butanoate

C21H35NO6 (397.2464)


Tetradeca-9,11-dienedioylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-9,11-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-9,11-dienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-9,11-dienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(6E,9E)-Tetradeca-6,9-dienedioylcarnitine

3-[(13-carboxytrideca-6,9-dienoyl)oxy]-4-(trimethylazaniumyl)butanoate

C21H35NO6 (397.2464)


(6E,9E)-Tetradeca-6,9-dienedioylcarnitine is an acylcarnitine. More specifically, it is an (6E,9E)-tetradeca-6,9-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (6E,9E)-Tetradeca-6,9-dienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (6E,9E)-Tetradeca-6,9-dienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(2E,4Z)-Tetradeca-2,4-dienedioylcarnitine

3-[(13-carboxytrideca-2,4-dienoyl)oxy]-4-(trimethylazaniumyl)butanoate

C21H35NO6 (397.2464)


(2E,4Z)-Tetradeca-2,4-dienedioylcarnitine is an acylcarnitine. More specifically, it is an (2E,4Z)-tetradeca-2,4-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E,4Z)-Tetradeca-2,4-dienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (2E,4Z)-Tetradeca-2,4-dienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(11Z)-Hexadecenoylcarnitine

3-(hexadec-11-enoyloxy)-4-(trimethylazaniumyl)butanoate

C23H43NO4 (397.3192)


(11Z)-Hexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (11Z)-hexadec-11-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (11Z)-Hexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (11Z)-Hexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (11Z)-Hexadecenoylcarnitine is elevated in the blood or plasma of individuals with children obesity (PMID: 23108202). It is also decreased in the blood or plasma of individuals with familial Mediterranean fever (PMID: 29900937). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(6Z)-Hexadecenoylcarnitine

3-(hexadec-6-enoyloxy)-4-(trimethylazaniumyl)butanoate

C23H43NO4 (397.3192)


(6Z)-Hexadecenoylcarnitine is an acylcarnitine. More specifically, it is an (6Z)-hexadec-6-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (6Z)-Hexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (6Z)-Hexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular (6Z)-Hexadecenoylcarnitine is elevated in the blood or plasma of individuals with children obesity (PMID: 23108202). It is also decreased in the blood or plasma of individuals with familial Mediterranean fever (PMID: 29900937). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

4-Hexadecenoylcarnitine

3-(hexadec-4-enoyloxy)-4-(trimethylazaniumyl)butanoate

C23H43NO4 (397.3192)


4-Hexadecenoylcarnitine is an acylcarnitine. More specifically, it is an hexadec-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-Hexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 4-Hexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 4-Hexadecenoylcarnitine is elevated in the blood or plasma of individuals with children obesity (PMID: 23108202). It is also decreased in the blood or plasma of individuals with familial Mediterranean fever (PMID: 29900937). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

7-Hexadecenoylcarnitine

3-(Hexadec-7-enoyloxy)-4-(trimethylazaniumyl)butanoic acid

C23H43NO4 (397.3192)


7-Hexadecenoylcarnitine is an acylcarnitine. More specifically, it is an hexadec-7-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-Hexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 7-Hexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 7-Hexadecenoylcarnitine is elevated in the blood or plasma of individuals with children obesity (PMID: 23108202). It is also decreased in the blood or plasma of individuals with familial Mediterranean fever (PMID: 29900937). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Oleoyl Aspartic acid

2-(octadec-9-enamido)butanedioic acid

C22H39NO5 (397.2828)


N-oleoyl aspartic acid, also known as N-oleoyl aspartate belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Oleic acid amide of Aspartic acid. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Oleoyl Aspartic acid is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Oleoyl Aspartic acid is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

1-(3,4-Diethoxybenzyl)-6,7-diethoxy-3,4-dihydroisoquinoline

1-[(3,4-diethoxyphenyl)methyl]-6,7-diethoxy-3,4-dihydroisoquinoline

C24H31NO4 (397.2253)


   

4-Tetradecanamidobenzylphosphonic acid

[(4-tetradecanamidophenyl)methyl]phosphonic acid

C21H36NO4P (397.2382)


   

AMP-Deoxynojirimycin

2R-(hydroxymethyl)-1-[5-(tricyclo[3.3.2.13,7]dec-1-ylmethoxy)pentyl]-3R,4R,5S-piperidinetriol

C22H39NO5 (397.2828)


   

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-[4-(2H-tetrazol-5-yl)butyl]-piperidine

1-[4-(2H-1,2,3,4-tetrazol-5-yl)butyl]-4-{tricyclo[9.4.0.0^{3,8}]pentadeca-1(15),3,5,7,9,11,13-heptaen-2-ylidene}piperidine

C25H27N5 (397.2266)


   

Hexadecenoylcarnitine

3-Hydroxy-4-oxo-3-[(trimethylazaniumyl)methyl]nonadec-5-enoic acid

C23H43NO4 (397.3192)


   

Buxaquamarine

Buxaquamarine

C26H39NO2 (397.2981)


   
   

Cyclomarazine A

Cyclomarazine A

C23H31N3O3 (397.2365)


   
   

Aspochalasin A

Aspochalasin A

C24H31NO4 (397.2253)


   
   

octadeca-9,12,15-trienoylanthranilic acid

octadeca-9,12,15-trienoylanthranilic acid

C25H35NO3 (397.2617)


   

dysidaminone B

dysidaminone B

C26H39NO2 (397.2981)


   
   

(2E,12E)-pipertridecadienamide

(2E,12E)-pipertridecadienamide

C25H35NO3 (397.2617)


   

dysidaminone F

dysidaminone F

C26H39NO2 (397.2981)


   

dysidaminone L

dysidaminone L

C26H39NO2 (397.2981)


   

N-3-Methoxybenzyl9Z,12Z,15Z-octadeca-9,12,15-trienamide

N-3-Methoxybenzyl9Z,12Z,15Z-octadeca-9,12,15-trienamide

C26H39NO2 (397.2981)


   

15-acetyloxysongoramine|15-Acetylsongoramine

15-acetyloxysongoramine|15-Acetylsongoramine

C24H31NO4 (397.2253)


   

(±)14(15)-EET-SI

(±)14(15)-EET-SI

C21H35NO4S (397.2287)


   

CHEMBL4559665

CHEMBL4559665

C22H39NO5 (397.2828)


   

AT-56

4-(5H-Dibenzo[a,d]cyclohepten-5-ylidene)-1-[4-(2H-tetrazol-5-yl)butyl]-piperidine

C25H27N5 (397.2266)


   

Alprostadil ethanolamide

Alprostadil ethanolamide

C22H39NO5 (397.2828)


   

FZ9FWW7N2Q

9,12,15-Octadecatrienamide, N-((3-methoxyphenyl)methyl)-, (9Z,12Z,15Z)-

C26H39NO2 (397.2981)


N-(3-Methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide is a natural product found in Lepidium meyenii with data available. See also: Lepidium meyenii root (part of). N-(3-Methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide is a macamide isolated from Maca (Lepidium meyenii?Walp.) N-(3-Methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide induces mesenchymal stem cells osteogenic differentiation and consequent bone formation through activating the canonical Wnt/β‐catenin signaling pathway. N-(3-Methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide can be used for the research of osteoporosis[1].

   

Phytosphingosine-1-P

Phytosphingosine-1-P

C18H40NO6P (397.2593)


   

Gly Lys Pro Pro

(2S)-1-{[(2S)-1-[(2S)-6-amino-2-(2-aminoacetamido)hexanoyl]pyrrolidin-2-yl]carbonyl}pyrrolidine-2-carboxylic acid

C18H31N5O5 (397.2325)


   

Gly Pro Lys Pro

(2S)-1-[(2S)-6-amino-2-{[(2S)-1-(2-aminoacetyl)pyrrolidin-2-yl]formamido}hexanoyl]pyrrolidine-2-carboxylic acid

C18H31N5O5 (397.2325)


   

Gly Pro Pro Lys

(2S)-6-amino-2-{[(2S)-1-{[(2S)-1-(2-aminoacetyl)pyrrolidin-2-yl]carbonyl}pyrrolidin-2-yl]formamido}hexanoic acid

C18H31N5O5 (397.2325)


   

Lys Gly Pro Pro

(2S)-1-{[(2S)-1-{2-[(2S)-2,6-diaminohexanamido]acetyl}pyrrolidin-2-yl]carbonyl}pyrrolidine-2-carboxylic acid

C18H31N5O5 (397.2325)


   

Lys Pro Gly Pro

(2S)-1-(2-{[(2S)-1-[(2S)-2,6-diaminohexanoyl]pyrrolidin-2-yl]formamido}acetyl)pyrrolidine-2-carboxylic acid

C18H31N5O5 (397.2325)


   

Lys Pro Pro Gly

2-{[(2S)-1-{[(2S)-1-[(2S)-2,6-diaminohexanoyl]pyrrolidin-2-yl]carbonyl}pyrrolidin-2-yl]formamido}acetic acid

C18H31N5O5 (397.2325)


   

Pro Gly Lys Pro

(2S)-1-[(2S)-6-amino-2-{2-[(2S)-pyrrolidin-2-ylformamido]acetamido}hexanoyl]pyrrolidine-2-carboxylic acid

C18H31N5O5 (397.2325)


   

Pro Gly Pro Lys

(2S)-6-amino-2-{[(2S)-1-{2-[(2S)-pyrrolidin-2-ylformamido]acetyl}pyrrolidin-2-yl]formamido}hexanoic acid

C18H31N5O5 (397.2325)


   

Pro Lys Gly Pro

(2S)-1-{2-[(2S)-6-amino-2-[(2S)-pyrrolidin-2-ylformamido]hexanamido]acetyl}pyrrolidine-2-carboxylic acid

C18H31N5O5 (397.2325)


   

Pro Lys Pro Gly

2-{[(2S)-1-[(2S)-6-amino-2-[(2S)-pyrrolidin-2-ylformamido]hexanoyl]pyrrolidin-2-yl]formamido}acetic acid

C18H31N5O5 (397.2325)


   

Pro Pro Gly Lys

(2S)-6-amino-2-(2-{[(2S)-1-{[(2S)-pyrrolidin-2-yl]carbonyl}pyrrolidin-2-yl]formamido}acetamido)hexanoic acid

C18H31N5O5 (397.2325)


   

Pro Pro Lys Gly

2-[(2S)-6-amino-2-{[(2S)-1-{[(2S)-pyrrolidin-2-yl]carbonyl}pyrrolidin-2-yl]formamido}hexanamido]acetic acid

C18H31N5O5 (397.2325)


   

PGF2α-EA

N-(9S,11R,15S-trihydroxy-5Z,13E-prostadienoyl)-ethanolamine

C22H39NO5 (397.2828)


   

PC(O-9:0/O-1:0)[U]

3,5,9-Trioxa-4-phosphaoctadecan-1-aminium, 4-hydroxy-7-methoxy-N,N,N-trimethyl-, inner salt, 4-oxide

C18H40NO6P (397.2593)


   

PC(9:0/0:0)

3,5,9-Trioxa-4-phosphaoctadecan-1-aminium, 4,7-dihydroxy-N,N,N-trimethyl-10-oxo-, inner salt, 4-oxide, (R)-

C17H36NO7P (397.2229)


   

PC(9:0/0:0)[U]

3,5,9-Trioxa-4-phosphaoctadecan-1-aminium, 4,7-dihydroxy-N,N,N-trimethyl-10-oxo-, inner salt, 4-oxide

C17H36NO7P (397.2229)


   

PC(0:0/9:0)[U]

3,5,8-Trioxa-4-phosphaheptadecan-1-aminium, 4-hydroxy-7-(hydroxymethyl)-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide

C17H36NO7P (397.2229)


   

PE(12:0/0:0)

Dodecanoic acid, 3-[[(2-aminoethoxy)hydroxyphosphinyl]oxy]-2-hydroxypropyl ester, (R)-

C17H36NO7P (397.2229)


   

Ethanolamide

N-(2-hydroxyethyl)-9α,11β,15S-trihydroxy-prosta-5Z,13E-dien-1-amide

C22H39NO5 (397.2828)


   

(±)14(15)-EET-SI

N-(methylsulfonyl)-13-(3-pentyloxiranyl)-5Z,8Z,11Z-tridecatrienamide

C21H35NO4S (397.2287)


   

AMP-Deoxynojirimycin

2R-(hydroxymethyl)-1-[5-(tricyclo[3.3.2.13,7]dec-1-ylmethoxy)pentyl]-3R,4R,5S-piperidinetriol

C22H39NO5 (397.2828)


   

Prostaglandin E1 Ethanolamide

N-(2-hydroxyethyl)-9-oxo-11α,15S-dihydroxy-prost-13E-en-1-amide

C22H39NO5 (397.2828)


   

S32826

P-[[4-[(1-oxotetradecyl)amino]phenyl]methyl]-phosphonic acid

C21H36NO4P (397.2382)


   

PGF2alpha-EA(d4)

N-(9S,11R,15S-trihydroxy-5Z,13E-prostadienoyl)-ethanolamine(d4)

C22H39NO5 (397.2828)


   

11beta-PGF2alpha-EA

N-(9S,11S,15S-trihydroxy-5Z,13E-prostadienoyl)-ethanolamine

C22H39NO5 (397.2828)


   

8-iso-PGF2alpha III-EA

N-([8S,12R]9S,11R,15S-trihydroxy-5Z,13E-prostadienoyl)-ethanolamine

C22H39NO5 (397.2828)


   

PhS1P

(2S,3S,4R)-2-amino-3,4-dihydroxyoctadecyl dihydrogen phosphate

C18H40NO6P (397.2593)


   

trans-2-Hexadecenoyl-carnitine

trans-Hexadec-2-enoyl carnitine

C23H43NO4 (397.3192)


   

PHS-1-Phosphate

Phytosphingosine-1-P

C18H40NO6P (397.2593)


   

PGE1-EA

N-(9-oxo-11R,15S-dihydroxy-13E-prostenoyl)-ethanolamine

C22H39NO5 (397.2828)


   

Drotaverin

(1Z)-1-[(3,4-diethoxyphenyl)methylidene]-6,7-diethoxy-1,2,3,4-tetrahydroisoquinoline

C24H31NO4 (397.2253)


A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AD - Papaverine and derivatives C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

PMF2alpha

N-(9S,11R,15S-trihydroxy-5Z,13E-prostadienoyl)-ethanolamine

C22H39NO5 (397.2828)


   

CAR 16:1

(9Z)-hexadec-9-enoylcarnitine;3-[(9Z)-hexadec-9-enoyloxy]-4-(trimethylammonio)butanoate;cis-9-hexadecenoylcarnitine

C23H43NO4 (397.3192)


   

LPC 9:0

1-nonanoyl-sn-glycero-3-phosphocholine

C17H36NO7P (397.2229)


   

LPE 12:0

Dodecanoic acid, 3-[[(2-aminoethoxy)hydroxyphosphinyl]oxy]-2-hydroxypropyl ester, (R)-

C17H36NO7P (397.2229)


   

3-N-BOC-AMINO-1-[2-AMINO-1-(3-PHENOXY-PHENYL)-ETHYL]-PYRROLIDINE

3-N-BOC-AMINO-1-[2-AMINO-1-(3-PHENOXY-PHENYL)-ETHYL]-PYRROLIDINE

C23H31N3O3 (397.2365)


   

Diethylamino hydroxybenzoyl hexyl benzoate

Diethylamino hydroxybenzoyl hexyl benzoate

C24H31NO4 (397.2253)


   

4-(2-(BENZYL(METHYL)AMINO)ETHYL)-1,2-PHENYLENE BIS(2-METHYLPROPANOATE)

4-(2-(BENZYL(METHYL)AMINO)ETHYL)-1,2-PHENYLENE BIS(2-METHYLPROPANOATE)

C24H31NO4 (397.2253)


   

Sodium N-tetradecanoyl-L-phenlyalaninate

Sodium N-tetradecanoyl-L-phenlyalaninate

C23H36NNaO3 (397.2593)


   

(+)-MK801MALEATE

(+)-MK801MALEATE

C22H39NO3S (397.2651)


   

Fadraciclib

Fadraciclib

C21H31N7O (397.259)


C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C2185 - Cyclin-Dependent Kinase Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent

   

(Methylpyridazine piperidine butyloxyphenyl)ethylacetate

(Methylpyridazine piperidine butyloxyphenyl)ethylacetate

C23H31N3O3 (397.2365)


   

Drotaverine

Drotaverin hydrochloride

C24H31NO4 (397.2253)


A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AD - Papaverine and derivatives C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

PGF2alpha-ethanolamine(d4)

PGF2alpha-ethanolamine(d4)

C22H39NO5 (397.2828)


   

1-Lauroyl-sn-glycero-3-phosphoethanolamine

1-Lauroyl-sn-glycero-3-phosphoethanolamine

C17H36NO7P (397.2229)


   

2-acyl-sn-glycero-3-phosphoethanolamine (n-C12:0)

2-acyl-sn-glycero-3-phosphoethanolamine (n-C12:0)

C17H36NO7P (397.2229)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hydroxypropan-2-yl] dodecanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hydroxypropan-2-yl] dodecanoate

C17H36NO7P (397.2229)


   

O-palmitoleoyl-l-carnitine

O-palmitoleoyl-l-carnitine

C23H43NO4 (397.3192)


   

trans-2-Hexadecenoylcarnitine

trans-2-Hexadecenoylcarnitine

C23H43NO4 (397.3192)


   

N-Oleoyl Aspartic acid

N-Oleoyl Aspartic acid

C22H39NO5 (397.2828)


   

4-Hexadecenoylcarnitine

4-Hexadecenoylcarnitine

C23H43NO4 (397.3192)


   

7-Hexadecenoylcarnitine

7-Hexadecenoylcarnitine

C23H43NO4 (397.3192)


   

(6Z)-Hexadecenoylcarnitine

(6Z)-Hexadecenoylcarnitine

C23H43NO4 (397.3192)


   

(11Z)-Hexadecenoylcarnitine

(11Z)-Hexadecenoylcarnitine

C23H43NO4 (397.3192)


   

Tetradeca-9,11-dienedioylcarnitine

Tetradeca-9,11-dienedioylcarnitine

C21H35NO6 (397.2464)


   

(6E,9E)-Tetradeca-6,9-dienedioylcarnitine

(6E,9E)-Tetradeca-6,9-dienedioylcarnitine

C21H35NO6 (397.2464)


   

(2E,4Z)-Tetradeca-2,4-dienedioylcarnitine

(2E,4Z)-Tetradeca-2,4-dienedioylcarnitine

C21H35NO6 (397.2464)


   

9-Hexadecenoylcarnitine

9-Hexadecenoylcarnitine

C23H43NO4 (397.3192)


   

1-[1-(cyclooctylmethyl)-5-(hydroxymethyl)-3,6-dihydro-2H-pyridin-4-yl]-3-ethyl-2-benzimidazolone

1-[1-(cyclooctylmethyl)-5-(hydroxymethyl)-3,6-dihydro-2H-pyridin-4-yl]-3-ethyl-2-benzimidazolone

C24H35N3O2 (397.2729)


   

1-Decyl-sn-glycero-3-phosphocholine

1-Decyl-sn-glycero-3-phosphocholine

C18H40NO6P (397.2593)


   

3-[2-Oxo-2-[4-(phenylmethyl)-1-piperidinyl]ethyl]-1,3-diazaspiro[4.6]undecane-2,4-dione

3-[2-Oxo-2-[4-(phenylmethyl)-1-piperidinyl]ethyl]-1,3-diazaspiro[4.6]undecane-2,4-dione

C23H31N3O3 (397.2365)


   

N-[[(8R,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

N-[[(8R,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

C18H31N5O5 (397.2325)


   

N-[[(8R,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

N-[[(8R,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

C18H31N5O5 (397.2325)


   

N-[[(8R,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

N-[[(8R,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

C18H31N5O5 (397.2325)


   

N-[[(8S,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

N-[[(8S,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

C18H31N5O5 (397.2325)


   

(5S)-5-(2-methylpropyl)-3-[(2E,6R,8E,10E,12E)-6,8,10,12-tetramethyltetradeca-2,8,10,12-tetraenoyl]-2,5-dihydro-1H-pyrrol-2-one

(5S)-5-(2-methylpropyl)-3-[(2E,6R,8E,10E,12E)-6,8,10,12-tetramethyltetradeca-2,8,10,12-tetraenoyl]-2,5-dihydro-1H-pyrrol-2-one

C26H39NO2 (397.2981)


   

3-{[(1S,2R,4aR,6R,8aS)-2-(but-2-en-2-yl)-3,4a,6-trimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl](hydroxy)methylidene}-5-(2-methylpropyl)-2,3-dihydro-1H-pyrrol-2-one

3-{[(1S,2R,4aR,6R,8aS)-2-(but-2-en-2-yl)-3,4a,6-trimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl](hydroxy)methylidene}-5-(2-methylpropyl)-2,3-dihydro-1H-pyrrol-2-one

C26H39NO2 (397.2981)


   

(3Z)-3-[(2E,6R,8E,10E,12E)-1-hydroxy-6,8,10,12-tetramethyltetradeca-2,8,10,12-tetraen-1-ylidene]-5-(2-methylpropyl)-2,3-dihydro-1H-pyrrol-2-one

(3Z)-3-[(2E,6R,8E,10E,12E)-1-hydroxy-6,8,10,12-tetramethyltetradeca-2,8,10,12-tetraen-1-ylidene]-5-(2-methylpropyl)-2,3-dihydro-1H-pyrrol-2-one

C26H39NO2 (397.2981)


   

(5S)-3-[(1S,2R,4aR,6R,8aS)-2-(but-2-en-2-yl)-3,4a,6-trimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalene-1-carbonyl]-5-(2-methylpropyl)-2,5-dihydro-1H-pyrrol-2-one

(5S)-3-[(1S,2R,4aR,6R,8aS)-2-(but-2-en-2-yl)-3,4a,6-trimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalene-1-carbonyl]-5-(2-methylpropyl)-2,5-dihydro-1H-pyrrol-2-one

C26H39NO2 (397.2981)


   

(+/-)14(15)-Eet-SI

(+/-)14(15)-Eet-SI

C21H35NO4S (397.2287)


   

N-[[(8R,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

N-[[(8R,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

C18H31N5O5 (397.2325)


   

N-[[(8S,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

N-[[(8S,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

C18H31N5O5 (397.2325)


   

N-[[(8S,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

N-[[(8S,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

C18H31N5O5 (397.2325)


   

N-[[(8R,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

N-[[(8R,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid methyl ester

C18H31N5O5 (397.2325)


   

N-cyclohexyl-2-[(2R,5R,6S)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

N-cyclohexyl-2-[(2R,5R,6S)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

C20H35N3O5 (397.2577)


   

N-cyclohexyl-2-[(2S,5S,6S)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

N-cyclohexyl-2-[(2S,5S,6S)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

C20H35N3O5 (397.2577)


   

(2S,3S)-1-acetyl-3-[4-(1-cyclopentenyl)phenyl]-2-(hydroxymethyl)-N-propan-2-yl-1,6-diazaspiro[3.3]heptane-6-carboxamide

(2S,3S)-1-acetyl-3-[4-(1-cyclopentenyl)phenyl]-2-(hydroxymethyl)-N-propan-2-yl-1,6-diazaspiro[3.3]heptane-6-carboxamide

C23H31N3O3 (397.2365)


   

(2R,3R)-6-[cyclobutyl(oxo)methyl]-N-cyclopentyl-2-(hydroxymethyl)-3-phenyl-1,6-diazaspiro[3.3]heptane-1-carboxamide

(2R,3R)-6-[cyclobutyl(oxo)methyl]-N-cyclopentyl-2-(hydroxymethyl)-3-phenyl-1,6-diazaspiro[3.3]heptane-1-carboxamide

C23H31N3O3 (397.2365)


   

N-cyclohexyl-2-[(2S,5R,6S)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

N-cyclohexyl-2-[(2S,5R,6S)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

C20H35N3O5 (397.2577)


   

N-cyclohexyl-2-[(2R,5S,6R)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

N-cyclohexyl-2-[(2R,5S,6R)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

C20H35N3O5 (397.2577)


   

N-cyclohexyl-2-[(2S,5S,6R)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

N-cyclohexyl-2-[(2S,5S,6R)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

C20H35N3O5 (397.2577)


   

N-cyclohexyl-2-[(2R,5R,6R)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

N-cyclohexyl-2-[(2R,5R,6R)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

C20H35N3O5 (397.2577)


   

N-cyclohexyl-2-[(2R,5S,6S)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

N-cyclohexyl-2-[(2R,5S,6S)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

C20H35N3O5 (397.2577)


   

N-cyclohexyl-2-[(2S,5R,6R)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

N-cyclohexyl-2-[(2S,5R,6R)-6-(hydroxymethyl)-5-[[2-(4-morpholinyl)-1-oxoethyl]amino]-2-oxanyl]acetamide

C20H35N3O5 (397.2577)


   

(2R,3R)-1-acetyl-3-[4-(1-cyclopentenyl)phenyl]-2-(hydroxymethyl)-N-propan-2-yl-1,6-diazaspiro[3.3]heptane-6-carboxamide

(2R,3R)-1-acetyl-3-[4-(1-cyclopentenyl)phenyl]-2-(hydroxymethyl)-N-propan-2-yl-1,6-diazaspiro[3.3]heptane-6-carboxamide

C23H31N3O3 (397.2365)


   

1-[(1R)-2-(cyclopropylmethyl)-1-(hydroxymethyl)-7-methoxy-1-spiro[3,9-dihydro-1H-pyrido[3,4-b]indole-4,3-azetidine]yl]-1-butanone

1-[(1R)-2-(cyclopropylmethyl)-1-(hydroxymethyl)-7-methoxy-1-spiro[3,9-dihydro-1H-pyrido[3,4-b]indole-4,3-azetidine]yl]-1-butanone

C23H31N3O3 (397.2365)


   

(6R,7R,8S)-N-cyclohexyl-8-(hydroxymethyl)-2-oxo-7-[4-[(E)-prop-1-enyl]phenyl]-1,4-diazabicyclo[4.2.0]octane-4-carboxamide

(6R,7R,8S)-N-cyclohexyl-8-(hydroxymethyl)-2-oxo-7-[4-[(E)-prop-1-enyl]phenyl]-1,4-diazabicyclo[4.2.0]octane-4-carboxamide

C23H31N3O3 (397.2365)


   

(6R,7R,8R)-N-cyclohexyl-8-(hydroxymethyl)-2-oxo-7-[4-[(E)-prop-1-enyl]phenyl]-1,4-diazabicyclo[4.2.0]octane-4-carboxamide

(6R,7R,8R)-N-cyclohexyl-8-(hydroxymethyl)-2-oxo-7-[4-[(E)-prop-1-enyl]phenyl]-1,4-diazabicyclo[4.2.0]octane-4-carboxamide

C23H31N3O3 (397.2365)


   

(2S,3S)-6-[cyclobutyl(oxo)methyl]-N-cyclopentyl-2-(hydroxymethyl)-3-phenyl-1,6-diazaspiro[3.3]heptane-1-carboxamide

(2S,3S)-6-[cyclobutyl(oxo)methyl]-N-cyclopentyl-2-(hydroxymethyl)-3-phenyl-1,6-diazaspiro[3.3]heptane-1-carboxamide

C23H31N3O3 (397.2365)


   

[(1S)-1-(cyclopentylmethyl)-7-methoxy-9-methyl-1-spiro[2,3-dihydro-1H-pyrido[3,4-b]indole-4,4-piperidine]yl]methanol

[(1S)-1-(cyclopentylmethyl)-7-methoxy-9-methyl-1-spiro[2,3-dihydro-1H-pyrido[3,4-b]indole-4,4-piperidine]yl]methanol

C24H35N3O2 (397.2729)


   

(3-Decoxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(3-Decoxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C18H40NO6P (397.2593)


   

1-Nonanoyl-2-hydroxy-sn-glycero-3-phosphocholine

1-Nonanoyl-2-hydroxy-sn-glycero-3-phosphocholine

C17H36NO7P (397.2229)


   

2-Aminoethyl (2-hydroxy-3-tridecoxypropyl) hydrogen phosphate

2-Aminoethyl (2-hydroxy-3-tridecoxypropyl) hydrogen phosphate

C18H40NO6P (397.2593)


   

[3-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] dodecanoate

[3-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] dodecanoate

C17H36NO7P (397.2229)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-octoxypropan-2-yl] butanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-octoxypropan-2-yl] butanoate

C17H36NO7P (397.2229)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-nonoxypropan-2-yl] propanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-nonoxypropan-2-yl] propanoate

C17H36NO7P (397.2229)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] acetate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] acetate

C17H36NO7P (397.2229)


   

2-[(2-Acetamido-3-hydroxydecoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[(2-Acetamido-3-hydroxydecoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium

C17H38N2O6P+ (397.2467)


   

2-[[2-(Butanoylamino)-3-hydroxyoctoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-(Butanoylamino)-3-hydroxyoctoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C17H38N2O6P+ (397.2467)


   

2-[Hydroxy-[3-hydroxy-2-(propanoylamino)nonoxy]phosphoryl]oxyethyl-trimethylazanium

2-[Hydroxy-[3-hydroxy-2-(propanoylamino)nonoxy]phosphoryl]oxyethyl-trimethylazanium

C17H38N2O6P+ (397.2467)


   

Phytosphingosine 1-phosphate

Phytosphingosine 1-phosphate

C18H40NO6P (397.2593)


A phosphosphingolipid that is phytosphingosine bearing a phospho group at position 1.

   

1-dodecanoyl-sn-glycero-3-phosphoethanolamine

1-dodecanoyl-sn-glycero-3-phosphoethanolamine

C17H36NO7P (397.2229)


   

(2E)-hexadecenoylcarnitine

(2E)-hexadecenoylcarnitine

C23H43NO4 (397.3192)


An O-hexadecenoylcarnitine having (2E)-hexadecenoyl as the acyl substituent.

   

PGF2a ethanolamide

PGF2a ethanolamide

C22H39NO5 (397.2828)


   

O-palmitoleoylcarnitine

O-palmitoleoylcarnitine

C23H43NO4 (397.3192)


An O-acylcarnitine having palmitoleoyl as the acyl substituent.

   

4-Tetradecanamidobenzylphosphonic acid

4-Tetradecanamidobenzylphosphonic acid

C21H36NO4P (397.2382)


   
   

1-nonanoyl-sn-glycero-3-phosphocholine

1-nonanoyl-sn-glycero-3-phosphocholine

C17H36NO7P (397.2229)


   

O-hexadecenoylcarnitine

O-hexadecenoylcarnitine

C23H43NO4 (397.3192)


An O-acylcarnitine having a hexadecenoyl group with an unspecified double bond as the acyl substituent.

   

O-hexadecenoyl-L-carnitine

O-hexadecenoyl-L-carnitine

C23H43NO4 (397.3192)


An O-acyl-L-carnitine that is L-carnitine having a hexadecenoyl group as the acyl substituent in which the position of the double bond is unspecified.

   

CarE(16:1)

CarE(16:1)

C23H43NO4 (397.3192)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

NA-2AAA 16:1(9Z)

NA-2AAA 16:1(9Z)

C22H39NO5 (397.2828)


   

NA-Asp 18:1(9Z)

NA-Asp 18:1(9Z)

C22H39NO5 (397.2828)


   

NA-Cit 15:1(9Z)

NA-Cit 15:1(9Z)

C21H39N3O4 (397.294)


   

NA-Glu 17:1(9Z)

NA-Glu 17:1(9Z)

C22H39NO5 (397.2828)


   

NA-Histamine 20:4(5Z,8Z,11Z,14Z)

NA-Histamine 20:4(5Z,8Z,11Z,14Z)

C25H39N3O (397.3093)


   

NA-Met 17:2(9Z,12Z)

NA-Met 17:2(9Z,12Z)

C22H39NO3S (397.2651)


   

NA-PABA 18:3(6Z,9Z,12Z)

NA-PABA 18:3(6Z,9Z,12Z)

C25H35NO3 (397.2617)


   

NA-PABA 18:3(9Z,12Z,15Z)

NA-PABA 18:3(9Z,12Z,15Z)

C25H35NO3 (397.2617)


   

NA-Ser 20:1(11Z)

NA-Ser 20:1(11Z)

C23H43NO4 (397.3192)


   

NA-Thr 19:1(9Z)

NA-Thr 19:1(9Z)

C23H43NO4 (397.3192)


   
   
   
   
   
   
   
   

ST 19:0;O4;Gly

ST 19:0;O4;Gly

C21H35NO6 (397.2464)


   

ST 22:5;O2;Gly

ST 22:5;O2;Gly

C24H31NO4 (397.2253)


   

n-[(3-methoxyphenyl)methyl]octadeca-9,12,15-trienimidic acid

n-[(3-methoxyphenyl)methyl]octadeca-9,12,15-trienimidic acid

C26H39NO2 (397.2981)


   

13,15-dihydroxy-3,15-dimethyl-6-(6-methylhepta-3,5-dien-2-yl)-12-azatetracyclo[8.5.1.0³,⁷.0¹³,¹⁶]hexadeca-7,9-dien-11-one

13,15-dihydroxy-3,15-dimethyl-6-(6-methylhepta-3,5-dien-2-yl)-12-azatetracyclo[8.5.1.0³,⁷.0¹³,¹⁶]hexadeca-7,9-dien-11-one

C25H35NO3 (397.2617)


   

1-[(6r,7s,10s,11r,14r,15r,20r)-6,10,15,19-tetramethyl-17-oxa-19-azapentacyclo[12.8.0.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosa-1,3-dien-7-yl]ethanone

1-[(6r,7s,10s,11r,14r,15r,20r)-6,10,15,19-tetramethyl-17-oxa-19-azapentacyclo[12.8.0.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosa-1,3-dien-7-yl]ethanone

C26H39NO2 (397.2981)


   

n-[(2s)-1-{[(2s)-1-[(2s,3s)-3-hexyl-4-oxooxetan-2-yl]heptan-2-yl]oxy}-3-methyl-1-oxobutan-2-yl]carboximidic acid

n-[(2s)-1-{[(2s)-1-[(2s,3s)-3-hexyl-4-oxooxetan-2-yl]heptan-2-yl]oxy}-3-methyl-1-oxobutan-2-yl]carboximidic acid

C22H39NO5 (397.2828)


   

1-{6,10,15,19-tetramethyl-17-oxa-19-azapentacyclo[12.8.0.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosa-1,3-dien-7-yl}ethanone

1-{6,10,15,19-tetramethyl-17-oxa-19-azapentacyclo[12.8.0.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosa-1,3-dien-7-yl}ethanone

C26H39NO2 (397.2981)


   

(3s,6s)-5-hydroxy-6-[(2r)-3-hydroxy-2-methylpropyl]-1-methyl-3-{[1-(2-methylbut-3-en-2-yl)indol-3-yl]methyl}-3,6-dihydropyrazin-2-one

(3s,6s)-5-hydroxy-6-[(2r)-3-hydroxy-2-methylpropyl]-1-methyl-3-{[1-(2-methylbut-3-en-2-yl)indol-3-yl]methyl}-3,6-dihydropyrazin-2-one

C23H31N3O3 (397.2365)


   

(1r,3s,6s,7z,10s,11s,14r,15s,20s)-7-ethylidene-6,10,15,19-tetramethyl-17-oxa-19-azahexacyclo[12.8.0.0¹,³.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosan-8-one

(1r,3s,6s,7z,10s,11s,14r,15s,20s)-7-ethylidene-6,10,15,19-tetramethyl-17-oxa-19-azahexacyclo[12.8.0.0¹,³.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosan-8-one

C26H39NO2 (397.2981)


   

11-hydroxy-7-methyl-17-methylidene-5-azahexacyclo[9.6.2.0³,¹⁵.0⁴,¹².0⁷,¹².0¹⁵,¹⁹]nonadec-4-en-14-yl 2-methylbutanoate

11-hydroxy-7-methyl-17-methylidene-5-azahexacyclo[9.6.2.0³,¹⁵.0⁴,¹².0⁷,¹².0¹⁵,¹⁹]nonadec-4-en-14-yl 2-methylbutanoate

C25H35NO3 (397.2617)


   

n-[1-(acetyloxy)-3-methoxypropan-2-yl]-2-methylhexadec-2-enimidic acid

n-[1-(acetyloxy)-3-methoxypropan-2-yl]-2-methylhexadec-2-enimidic acid

C23H43NO4 (397.3192)


   

1-[(6r,7s,10s,11r,14r,15s,20s)-6,10,15,19-tetramethyl-17-oxa-19-azapentacyclo[12.8.0.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosa-1,3-dien-7-yl]ethanone

1-[(6r,7s,10s,11r,14r,15s,20s)-6,10,15,19-tetramethyl-17-oxa-19-azapentacyclo[12.8.0.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosa-1,3-dien-7-yl]ethanone

C26H39NO2 (397.2981)


   

1-[(6r,7s,10s,11r,14r,15r,20s)-6,10,15,19-tetramethyl-17-oxa-19-azapentacyclo[12.8.0.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosa-1,3-dien-7-yl]ethanone

1-[(6r,7s,10s,11r,14r,15r,20s)-6,10,15,19-tetramethyl-17-oxa-19-azapentacyclo[12.8.0.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosa-1,3-dien-7-yl]ethanone

C26H39NO2 (397.2981)


   

(1s,3r,6r,9e,13s,15r,16r)-3,15-dimethyl-6-[(2s,3z)-6-methylhepta-3,5-dien-2-yl]-12-azatetracyclo[8.5.1.0³,⁷.0¹³,¹⁶]hexadeca-7,9,11-triene-11,13,15-triol

(1s,3r,6r,9e,13s,15r,16r)-3,15-dimethyl-6-[(2s,3z)-6-methylhepta-3,5-dien-2-yl]-12-azatetracyclo[8.5.1.0³,⁷.0¹³,¹⁶]hexadeca-7,9,11-triene-11,13,15-triol

C25H35NO3 (397.2617)


   

(2r,3s,4as,4br,5's,7r,8as)-2'-hydroxy-5'-[(1r)-1-hydroxyethyl]-4a,7-dimethyl-2-(prop-1-en-1-yl)-4b,5,6,7,8,8a-hexahydro-2h,5'h-spiro[phenanthrene-3,3'-pyrrole]-4,4'-dione

(2r,3s,4as,4br,5's,7r,8as)-2'-hydroxy-5'-[(1r)-1-hydroxyethyl]-4a,7-dimethyl-2-(prop-1-en-1-yl)-4b,5,6,7,8,8a-hexahydro-2h,5'h-spiro[phenanthrene-3,3'-pyrrole]-4,4'-dione

C24H31NO4 (397.2253)


   

7-ethylidene-6,10,15,19-tetramethyl-17-oxa-19-azahexacyclo[12.8.0.0¹,³.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosan-8-one

7-ethylidene-6,10,15,19-tetramethyl-17-oxa-19-azahexacyclo[12.8.0.0¹,³.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosan-8-one

C26H39NO2 (397.2981)


   

(7z)-7-ethylidene-6,10,15,19-tetramethyl-17-oxa-19-azahexacyclo[12.8.0.0¹,³.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosan-8-one

(7z)-7-ethylidene-6,10,15,19-tetramethyl-17-oxa-19-azahexacyclo[12.8.0.0¹,³.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosan-8-one

C26H39NO2 (397.2981)


   

(2r,3r,4as,4br,5'r,7r,8as)-2'-hydroxy-5'-[(1r)-1-hydroxyethyl]-4a,7-dimethyl-2-(prop-1-en-1-yl)-4b,5,6,7,8,8a-hexahydro-2h,5'h-spiro[phenanthrene-3,3'-pyrrole]-4,4'-dione

(2r,3r,4as,4br,5'r,7r,8as)-2'-hydroxy-5'-[(1r)-1-hydroxyethyl]-4a,7-dimethyl-2-(prop-1-en-1-yl)-4b,5,6,7,8,8a-hexahydro-2h,5'h-spiro[phenanthrene-3,3'-pyrrole]-4,4'-dione

C24H31NO4 (397.2253)


   

(9z,12z,15z)-n-[(3-methoxyphenyl)methyl]octadeca-9,12,15-trienimidic acid

(9z,12z,15z)-n-[(3-methoxyphenyl)methyl]octadeca-9,12,15-trienimidic acid

C26H39NO2 (397.2981)


   

1-{8,10,10,15,19-pentamethyl-6-oxa-8-azapentacyclo[12.7.0.0³,¹¹.0⁵,⁹.0¹⁵,¹⁹]henicosa-1(21),2-dien-18-yl}ethanone

1-{8,10,10,15,19-pentamethyl-6-oxa-8-azapentacyclo[12.7.0.0³,¹¹.0⁵,⁹.0¹⁵,¹⁹]henicosa-1(21),2-dien-18-yl}ethanone

C26H39NO2 (397.2981)


   

(1r,3r,7s,11s,12r,14s,15r,19s)-11-hydroxy-7-methyl-17-methylidene-5-azahexacyclo[9.6.2.0³,¹⁵.0⁴,¹².0⁷,¹².0¹⁵,¹⁹]nonadec-4-en-14-yl (2r)-2-methylbutanoate

(1r,3r,7s,11s,12r,14s,15r,19s)-11-hydroxy-7-methyl-17-methylidene-5-azahexacyclo[9.6.2.0³,¹⁵.0⁴,¹².0⁷,¹².0¹⁵,¹⁹]nonadec-4-en-14-yl (2r)-2-methylbutanoate

C25H35NO3 (397.2617)


   

(2e)-n-[(2r)-1-(acetyloxy)-3-methoxypropan-2-yl]-2-methylhexadec-2-enimidic acid

(2e)-n-[(2r)-1-(acetyloxy)-3-methoxypropan-2-yl]-2-methylhexadec-2-enimidic acid

C23H43NO4 (397.3192)


   

(1r,3s,6r,7z,10r,11r,14s,15s,20s)-7-ethylidene-6,10,15,19-tetramethyl-17-oxa-19-azahexacyclo[12.8.0.0¹,³.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosan-8-one

(1r,3s,6r,7z,10r,11r,14s,15s,20s)-7-ethylidene-6,10,15,19-tetramethyl-17-oxa-19-azahexacyclo[12.8.0.0¹,³.0³,¹¹.0⁶,¹⁰.0¹⁵,²⁰]docosan-8-one

C26H39NO2 (397.2981)