Exact Mass: 395.2042832
Exact Mass Matches: 395.2042832
Found 370 metabolites which its exact mass value is equals to given mass value 395.2042832
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
benzyl cetraxate
C24H29NO4 (395.20964740000005)
The benzyl ester of cetraxate.
Ketanserin
C22H22FN3O3 (395.16451140000004)
C - Cardiovascular system > C02 - Antihypertensives > C02K - Other antihypertensives > C02KD - Serotonin antagonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Ketanserin is a selective 5-HT2 receptor antagonist. Ketanserin also blocks hERG current (IhERG) in a concentration-dependent manner (IC50=0.11 μM).
1-Benzyl-7,8-dimethoxy-3-phenyl-3H-pyrazolo[3,4-c]isoquinoline
latrunculin B
C20H29NO5S (395.17663440000007)
A macrolide consisting of a 14-membered bicyclic lactone attached to the rare 2-thiazolidinone moiety. It is obtained from the Red Sea sponge Latrunculia magnifica.
4-Hydroxy-2-methyl-3-oxo-4-farnesyl-3,4-dihydroquinoline-1-oxide
A member of the class of quinoline N-oxides that is 4-hydroxy-2-methyl-3-oxo-3,4-dihydroquinoline-1-oxide carrying an additional (2E,6E)-farnesyl group at position 4.
(2R,5E)-6,10-dimethyl-2-[(2S)-4-methyl-5-oxido-1,2-dihydrofuro[2,3-c]quinolin-5-ium-2-yl]undeca-5,9-dien-2-ol
Ethyl 2-hydroxy-3-(3-indolyl)propanoate glucoside
Ethyl 2-hydroxy-3-(3-indolyl)propanoate glucoside is found in alcoholic beverages. Ethyl 2-hydroxy-3-(3-indolyl)propanoate glucoside is isolated from grapes (Reisling wine Isolated from grapes (Reisling wine). Ethyl 2-hydroxy-3-(3-indolyl)propanoate glucoside is found in alcoholic beverages.
Vesnarinone
Vesnarinone (INN) is a cardiotonic agent. A mixed phosphodiesterase 3 inhibitor and ion-channel modifier that has modest, dose-dependent, positive inotropic activity, but minimal negative chronotropic activity. Vesnarinone improves ventricular performance most in patients with the worst degree of heart failure. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D000970 - Antineoplastic Agents D002317 - Cardiovascular Agents D007155 - Immunologic Factors
Tetradeca-5,8,11-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
Tetradeca-5,8,11-trienedioylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-5,8,11-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-5,8,11-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-5,8,11-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Tetradeca-8,10,12-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
Tetradeca-8,10,12-trienedioylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-8,10,12-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-8,10,12-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-8,10,12-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Tetradeca-5,7,9-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
Tetradeca-5,7,9-trienedioylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-5,7,9-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-5,7,9-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-5,7,9-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2E,4Z,10Z)-Tetradeca-2,4,10-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
(2E,4Z,10Z)-Tetradeca-2,4,10-trienedioylcarnitine is an acylcarnitine. More specifically, it is an (2E,4Z,10Z)-tetradeca-2,4,10-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E,4Z,10Z)-Tetradeca-2,4,10-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (2E,4Z,10Z)-Tetradeca-2,4,10-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Tetradeca-7,9,11-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
Tetradeca-7,9,11-trienedioylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-7,9,11-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-7,9,11-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-7,9,11-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Tetradeca-6,8,10-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
Tetradeca-6,8,10-trienedioylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-6,8,10-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-6,8,10-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-6,8,10-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Tetradeca-4,7,10-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
Tetradeca-4,7,10-trienedioylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-4,7,10-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-4,7,10-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-4,7,10-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Tetradeca-6,9,12-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
Tetradeca-6,9,12-trienedioylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-6,9,12-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-6,9,12-trienedioylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-6,9,12-trienedioylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Methyl N-[6-[(4-pyridin-2-ylpiperazine-1-carbonyl)amino]-1H-benzimidazol-2-yl]carbamate
Desacetyllevonantradol
Isoline
latrunculin B
C20H29NO5S (395.17663440000007)
Quinagolida
C20H33N3O3S (395.22425080000005)
2-Ethyl-5,7-dimethyl-3-[4-[2-(2H-tetrazol-5-yl)phenyl]phenyl]imidazo[4,5-b]pyridine
D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D057911 - Angiotensin Receptor Antagonists
Velagliflozin
N-[3,3-Dimethyl-1-(methylamino)-1-oxobutan-2-yl]-N'-hydroxy-3-(hydroxymethyl)-2-(4-methoxyphenyl)butanediamide
C19H29N3O6 (395.20562540000003)
spiperone
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent Spiperone is a potent dopamine D2, serotonin 5-HT1A, and serotonin 5-HT2A antagonist. Spiperone is a widely used pharmacological tool. Spiperone has the potential for the research of neurology diseases[1].
caldaphnidine H|rel- (7aR,11R,12S,13aR,13bR)-6,7,7a,8,10,11,12,13,13a,13b-decahydro-13a-hydroxy-11,13b-dimethyl-14-oxo-1,12-methanopyrano[4,3,2:1,8]azuleno[4,5-a]indolizine-2-carboxylic acid methyl ester
(E)-(2R,3R,4S)-2-amino-1,3-dihydroxyisooctadec-6-ene-4-sulfate
C18H37NO6S (395.23414620000005)
(E)-(2R,3R,4S)-2-amino-1,3-dihydroxyoctadec-6-ene-4-sulfate
C18H37NO6S (395.23414620000005)
16beta-hydroxy-17beta-methoxy-deoxydihydroisoaustamide
14-Hydroxy-4-Hydroxy-3,6,7-trimethoxyphenanthroindolizidine
(S)-Tylohirsuticine|tylohirsuticine
C24H29NO4 (395.20964740000005)
18-oxotryprostatin A
An indole alkaloid that is tryprostatin A substituted by an oxo substituent at position 18. Isolated from Aspergillus sydowii, it exhibits cytotoxicity.
ethaverine
C24H29NO4 (395.20964740000005)
C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent C93038 - Cation Channel Blocker
precondylocarpine acetate
C23H27N2O4+ (395.19707220000004)
An organic cation which is an intermediate in the biosynthetic pathway leading to the synthesis of the monoterpenoid indole alkaloids, catharanthine and tabersonine.
(2E,4E,12E)-13-(1,3-benzodioxol-5-yl)-1-piperidin-1-yltrideca-2,4,12-trien-1-one
Quinagolide
C20H33N3O3S (395.22425080000005)
G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CB - Prolactine inhibitors D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists
PC(O-10:1/0:0)
C18H38NO6P (395.24366180000004)
Ethyl 2-hydroxy-3-(3-indolyl)propanoate glucoside
Vesnarinone
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D000970 - Antineoplastic Agents D002317 - Cardiovascular Agents D007155 - Immunologic Factors
Sphing-6E-enine 4R-sufate
C18H37NO6S (395.23414620000005)
2-amino-9-[(1S,3R,4S)-4-[dimethyl(phenyl)silyl]-3-(hydroxymethyl)-2-methylidenecyclopentyl]-3H-purin-6-one
C20H25N5O2Si (395.17774299999996)
Urea, N-[(2-chloro-6,8-dimethyl-3-quinolinyl)methyl]-N-(1-methylethyl)-N-(2-methylphenyl)- (9CI)
C23H26ClN3O (395.17642960000006)
2-[(1-Benzylpiperidin-4-yl)hydroxyMethyl]-5,6-dimethoxyindan-1-one
C24H29NO4 (395.20964740000005)
4-methylbenzenesulfonate,1,2,3,3-tetramethylbenzo[e]indol-3-ium
C23H25NO3S (395.15550600000006)
BENZYL 2-ACETAMIDO-2-DEOXY-3,6-DI-O-ACETYL-ALPHA-D-GLUCOPYRANOSIDE
Diethyl [4-(diphenylamino)benzyl]phosphonate
C23H26NO3P (395.1650216000001)
N,N-BIS(2-HYDROXYETHYL)-N-METHYLTETRADECAN-1-AMINIUM BROMIDE
C19H42BrNO2 (395.23987320000003)
methyl 5-[tert-butyl(dimethyl)silyl]oxy-4-(phenylmethoxycarbonylamino)pentanoate
C20H33NO5Si (395.21278880000006)
17-(2-aminoacetyl)-17-hydroxy-10,13-dimethyl-1,2,6,7,8,9,12,14,15,16-decahydrocyclopenta[a]phenanthrene-3,11-dione,hydrochloride
C21H30ClNO4 (395.18632500000007)
21-Amino-11,17-dihydroxy-(11b)-pregna-1,4-diene-3,20-dione hydrochloride
C21H30ClNO4 (395.18632500000007)
Benzyl isopropyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)carbamate
(1S)-N-{(1S)-1-Phenyl-2-[(trimethylsilyl)oxy]ethyl}-1-[4-(trifluo romethyl)phenyl]-1-propanamine
(R)-tert-butyl 4-(2-fluoro-4-(5-(hydroxyMethyl)-2-oxooxazolidin-3-yl)phenyl)piperazine-1-carboxylate
C19H26FN3O5 (395.18563980000005)
SR-31747
C23H35Cl2N (395.21464100000003)
D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors
N-[(1R)-1-(7,8-Dihydro-1-naphthalenyl)ethyl]-3-[3-(trifluoromethyl)phenyl]-1-propanamine hydrochloride (1:1)
C22H25ClF3N (395.16275160000004)
6-((3S,4S)-4-Methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl)-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo(3,4-d)pyrimidin-4-one
7-(tert-Butyl)-6-((1-ethyl-1H-1,2,4-triazol-5-yl)methoxy)-3-(2-fluorophenyl)-[1,2,4]triazolo[4,3-b]pyridazine
6-Phenyl-4-pyridin-4-yl-3-(4-pyrimidin-2-ylpiperazin-1-yl)pyridazine
1-Allyl-3-butyl-8-(N-acetyl-4-aminobenzyl)-xanthine
Gepirone hydrochloride
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist
N6,N6-dimethyl-N4-[1-(phenylmethyl)-5-indazolyl]pyrido[3,4-d]pyrimidine-4,6-diamine
N-[1-(phenylmethyl)-4-piperidinyl]-2-(3-pyridinyl)-4-quinazolinamine
(1S)-1-(1H-Indol-3-ylmethyl)-2-(2-pyridin-4-YL-[1,7]naphtyridin-5-yloxy)-ehylamine
3-Carboxamido-1,3,5(10)-Estratrien-17(R)-Spiro-2(5,5-Dimethyl-6oxo)tetrahydropyran
[[(3r,4r,5s,6r)-4,5-Dihydroxy-6-(Hydroxymethyl)-3-(Pentanoylamino)oxan-2-Ylidene]amino] N-Phenylcarbamate
6-Phenyl-4(R)-(7-phenyl-heptanoylamino)-hexanoic acid
4-hydroxy-2-methyl-4-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]quinolin-3(4H)-one 1-oxide
Tetradeca-5,7,9-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
Tetradeca-5,8,11-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
Tetradeca-7,9,11-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
Tetradeca-6,8,10-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
Tetradeca-4,7,10-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
Tetradeca-6,9,12-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
Tetradeca-8,10,12-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
(2E,4Z,10Z)-Tetradeca-2,4,10-trienedioylcarnitine
C21H33NO6 (395.23077580000006)
4-[(4Z,8Z)-15-hydroxy-5,10-dimethyl-3-oxo-2,14-dioxabicyclo[11.3.1]heptadeca-4,8-dien-15-yl]-1,3-thiazolidin-2-one
C20H29NO5S (395.17663440000007)
1-[2-[[(2-Chloroanilino)-oxomethyl]amino]-2-methyl-1-oxopropyl]-4-piperidinecarboxylic acid ethyl ester
C19H26ClN3O4 (395.16117460000004)
5-(2,4-Dimethoxyphenyl)-7-(3,4-dimethoxyphenyl)-1,7-dihydrotetrazolo[1,5-a]pyrimidine
C20H21N5O4 (395.15934660000005)
1-[[4-(Dimethylamino)phenyl]methyl]-1-(2-furanylmethyl)-3-(4-methoxyphenyl)thiourea
4-Morpholinecarboxylic acid [3-(6-amino-5-cyano-3-ethyl-2,4-dihydropyrano[2,3-c]pyrazol-4-yl)phenyl] ester
C20H21N5O4 (395.15934660000005)
(5R)-5-tert-butyl-1-[(3S)-3-phenyl-3-(phenylthio)propyl]-2-azepanone
C25H33NOS (395.22827280000007)
4-(Diethylamino)benzoic acid [2-oxo-2-(4-phenyl-1-piperazinyl)ethyl] ester
C23H29N3O3 (395.22088040000006)
1-[4-(1H-benzimidazol-2-yl)phenyl]-3-[3-(4-morpholinyl)propyl]thiourea
N-(1,3-benzothiazol-2-yl)-2-methoxy-N-[2-(1-methyl-2-pyrrolidinyl)ethyl]benzamide
N-[(4-tert-butylphenyl)methyl]-6-phenyl-3-(2-pyridinyl)-1,2,4-triazin-5-amine
3-Hydroxy-1-adamantanecarboxylic acid [2-[2-(difluoromethoxy)anilino]-2-oxoethyl] ester
N-(2-(2-((6-Chlorohexyl)oxy)ethoxy)ethyl)-6-fluoro-2-naphthamide
C21H27ClFNO3 (395.1663394000001)
1-[3-(Dimethylamino)propyl]-1-(phenylmethyl)-3-[3-(trifluoromethyl)phenyl]thiourea
C20H24F3N3S (395.16429400000004)
1-(1,3-benzoxazol-2-yl)-N-[(2,5-dimethoxyphenyl)methyl]-3-piperidinecarboxamide
1-[[3-(3-Fluorophenyl)-1-(4-methoxyphenyl)-4-pyrazolyl]methyl]-4-methoxypiperidine
2-(Naphthalen-1-ylamino)-N-[(E)-(3-phenoxyphenyl)methylideneamino]acetamide
2-[3-(3-morpholin-4-ylpropyl)-4-oxo-1,2-dihydroquinazolin-2-yl]benzoic Acid
1-[(3,4-Dimethoxyphenyl)-[1-(2-methoxyethyl)-5-tetrazolyl]methyl]-2,3-dihydroindole
N-[1-(4-tert-butylphenyl)-4,5,6,7-tetrahydroindazol-4-yl]-4-methyl-5-thiadiazolecarboxamide
N-[3-(4-morpholinyl)propyl]-3-(3-pyridinyl)-7,8-dihydro-6H-cyclopenta[4,5]thieno[1,2-c]pyrimidin-1-amine
2-[(6-methyl-4-spiro[3,4-dihydro-2H-1-benzopyran-2,1-cyclopentane]yl)thio]-N-(2-phenylethyl)acetamide
C24H29NO2S (395.19188940000004)
8-[(4-Phenethyl-1,4-diazepan-1-yl)sulfonyl]quinoline
4-[(1R,4Z,8Z,10S,13R,15R)-15-Hydroxy-5,10-dimethyl-3-oxo-2,14-dioxabicyclo[11.3.1]heptadeca-4,8-dien-15-yl]-1,3-thiazolidin-2-one
C20H29NO5S (395.17663440000007)
4-[3,4-dihydro-1H-isoquinolin-2-yl-[1-(2-methoxyethyl)-5-tetrazolyl]methyl]-2-methoxyphenol
(1R,9S,10S,11S)-12-(cyclopropylmethyl)-10-(hydroxymethyl)-6-oxo-N-(pyrimidin-4-ylmethyl)-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide
4-[4-[(1S,5R)-3-[(2-methoxyphenyl)methyl]-3,6-diazabicyclo[3.1.1]heptan-7-yl]phenyl]benzonitrile
(2R,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-8-[(E)-2-phenylethenyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
C23H29N3O3 (395.22088040000006)
(2R,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-8-[(E)-2-phenylethenyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
C23H29N3O3 (395.22088040000006)
(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-8-[(E)-2-phenylethenyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
C23H29N3O3 (395.22088040000006)
(1S,9R,10R,11R)-12-(cyclopropylmethyl)-10-(hydroxymethyl)-6-oxo-N-(pyrimidin-4-ylmethyl)-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide
(2R,3R,3aS,9bS)-N-(cyclopropylmethyl)-3-(hydroxymethyl)-6-oxo-1-(pyrimidin-5-ylmethyl)-3,3a,4,9b-tetrahydro-2H-pyrrolo[2,3-a]indolizine-2-carboxamide
N-(2-hydroxyphenyl)-N-[(E)-[(3S,4R,5R)-3,4,5-trihydroxyhexylidene]amino]heptanediamide
C19H29N3O6 (395.20562540000003)
(2S,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-8-[(E)-2-phenylethenyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
C23H29N3O3 (395.22088040000006)
N-[(2R,3S,6R)-2-(hydroxymethyl)-6-[2-[3-(4-morpholinyl)propylamino]-2-oxoethyl]-3,6-dihydro-2H-pyran-3-yl]cyclobutanecarboxamide
C20H33N3O5 (395.24200880000006)
N-[(2S,3S,6S)-2-(hydroxymethyl)-6-[2-[3-(4-morpholinyl)propylamino]-2-oxoethyl]-3,6-dihydro-2H-pyran-3-yl]cyclobutanecarboxamide
C20H33N3O5 (395.24200880000006)
1-(4-fluorophenyl)-3-[(2S,3R,6S)-2-(hydroxymethyl)-6-[2-(4-morpholinyl)-2-oxoethyl]-3-oxanyl]urea
C19H26FN3O5 (395.18563980000005)
1-(4-fluorophenyl)-3-[(2S,3R,6R)-2-(hydroxymethyl)-6-[2-(4-morpholinyl)-2-oxoethyl]-3-oxanyl]urea
C19H26FN3O5 (395.18563980000005)
1-(4-fluorophenyl)-3-[(2R,3R,6R)-2-(hydroxymethyl)-6-[2-(4-morpholinyl)-2-oxoethyl]-3-oxanyl]urea
C19H26FN3O5 (395.18563980000005)
1-(4-fluorophenyl)-3-[(2R,3R,6S)-2-(hydroxymethyl)-6-[2-(4-morpholinyl)-2-oxoethyl]-3-oxanyl]urea
C19H26FN3O5 (395.18563980000005)
N-[(2S,3R,6S)-6-[2-[3-(dimethylamino)propylamino]-2-oxoethyl]-2-(hydroxymethyl)-3-oxanyl]-2-fluorobenzamide
N-[(2S,3S,6S)-6-[2-[3-(dimethylamino)propylamino]-2-oxoethyl]-2-(hydroxymethyl)-3-oxanyl]-2-fluorobenzamide
N-[(2R,3R,6S)-6-[2-[3-(dimethylamino)propylamino]-2-oxoethyl]-2-(hydroxymethyl)-3-oxanyl]-2-fluorobenzamide
N-[(2S,3R,6R)-2-(hydroxymethyl)-6-[2-oxo-2-[[(1S)-1-phenylethyl]amino]ethyl]-3,6-dihydro-2H-pyran-3-yl]-3-pyridinecarboxamide
N-[(2R,3S,6S)-2-(hydroxymethyl)-6-[2-oxo-2-[[(1S)-1-phenylethyl]amino]ethyl]-3,6-dihydro-2H-pyran-3-yl]-3-pyridinecarboxamide
N-[(2S,3R,6S)-2-(hydroxymethyl)-6-[2-oxo-2-[[(1R)-1-phenylethyl]amino]ethyl]-3,6-dihydro-2H-pyran-3-yl]-3-pyridinecarboxamide
N-[(2S,3S,6R)-2-(hydroxymethyl)-6-[2-oxo-2-[[(1S)-1-phenylethyl]amino]ethyl]-3,6-dihydro-2H-pyran-3-yl]-3-pyridinecarboxamide
N-[(2R,3R,6S)-2-(hydroxymethyl)-6-[2-oxo-2-[[(1S)-1-phenylethyl]amino]ethyl]-3,6-dihydro-2H-pyran-3-yl]-3-pyridinecarboxamide
N-[(2S,3S,6S)-2-(hydroxymethyl)-6-[2-oxo-2-[[(1S)-1-phenylethyl]amino]ethyl]-3,6-dihydro-2H-pyran-3-yl]-3-pyridinecarboxamide
N-cyclohexyl-2-[(2R,3S,6S)-2-(hydroxymethyl)-3-[[2-(4-morpholinyl)-1-oxoethyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C20H33N3O5 (395.24200880000006)
N-cyclohexyl-2-[(2R,3S,6R)-2-(hydroxymethyl)-3-[[2-(4-morpholinyl)-1-oxoethyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C20H33N3O5 (395.24200880000006)
N-cyclohexyl-2-[(2S,3S,6S)-2-(hydroxymethyl)-3-[[2-(4-morpholinyl)-1-oxoethyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C20H33N3O5 (395.24200880000006)
(2R,3R,4S)-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-1-[2-(4-morpholinyl)-1-oxoethyl]-2-azetidinecarbonitrile
C23H29N3O3 (395.22088040000006)
(2S,3S,4R)-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-1-[2-(4-morpholinyl)-1-oxoethyl]-2-azetidinecarbonitrile
C23H29N3O3 (395.22088040000006)
(2R,3R,4R)-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-1-[2-(4-morpholinyl)-1-oxoethyl]-2-azetidinecarbonitrile
C23H29N3O3 (395.22088040000006)
N-[[(2R,3S,4S)-1-acetyl-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-N-(2-methylpropyl)-2-pyridinecarboxamide
C23H29N3O3 (395.22088040000006)
N-[[(2S,3R,4R)-1-acetyl-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-N-(2-methylpropyl)-2-pyridinecarboxamide
C23H29N3O3 (395.22088040000006)
N-[[(2R,3S,4R)-4-(hydroxymethyl)-3-(4-phenylphenyl)-2-azetidinyl]methyl]-2-(4-morpholinyl)acetamide
C23H29N3O3 (395.22088040000006)
(1R,2aS,8bS)-1-(hydroxymethyl)-2-[(3-methoxyphenyl)methyl]-N-propyl-1,2a,3,8b-tetrahydroazeto[2,3-c]quinoline-4-carboxamide
C23H29N3O3 (395.22088040000006)
(2S,3S,3aR,9bR)-N-(cyclopropylmethyl)-3-(hydroxymethyl)-6-oxo-1-(5-pyrimidinylmethyl)-3,3a,4,9b-tetrahydro-2H-pyrrolo[2,3-a]indolizine-2-carboxamide
3-[4-[(1R,5S)-6-[(2-methoxyphenyl)methyl]-3,6-diazabicyclo[3.1.1]heptan-7-yl]phenyl]benzonitrile
[(1R)-1-[(4-fluorophenyl)methyl]-7-methoxy-9-methyl-1-spiro[2,3-dihydro-1H-pyrido[3,4-b]indole-4,3-azetidine]yl]methanol
(2S,3S)-1-acetyl-2-(hydroxymethyl)-N-(3-methoxyphenyl)-3-phenyl-1,6-diazaspiro[3.3]heptane-6-carboxamide
1-[(2S,3R)-2-(hydroxymethyl)-1-(2-methoxy-1-oxoethyl)-3-phenyl-1,6-diazaspiro[3.3]heptan-6-yl]-2-(2-pyridinyl)ethanone
N-[(2S,3R,6R)-2-(hydroxymethyl)-6-[2-[3-(4-morpholinyl)propylamino]-2-oxoethyl]-3,6-dihydro-2H-pyran-3-yl]cyclobutanecarboxamide
C20H33N3O5 (395.24200880000006)
N-[(2R,3S,6S)-2-(hydroxymethyl)-6-[2-[3-(4-morpholinyl)propylamino]-2-oxoethyl]-3,6-dihydro-2H-pyran-3-yl]cyclobutanecarboxamide
C20H33N3O5 (395.24200880000006)
N-[(2S,3R,6S)-2-(hydroxymethyl)-6-[2-[3-(4-morpholinyl)propylamino]-2-oxoethyl]-3,6-dihydro-2H-pyran-3-yl]cyclobutanecarboxamide
C20H33N3O5 (395.24200880000006)
N-[(2S,3S,6R)-2-(hydroxymethyl)-6-[2-[3-(4-morpholinyl)propylamino]-2-oxoethyl]-3,6-dihydro-2H-pyran-3-yl]cyclobutanecarboxamide
C20H33N3O5 (395.24200880000006)
N-[(2R,3R,6S)-2-(hydroxymethyl)-6-[2-[3-(4-morpholinyl)propylamino]-2-oxoethyl]-3,6-dihydro-2H-pyran-3-yl]cyclobutanecarboxamide
C20H33N3O5 (395.24200880000006)
N-[(2R,3R,6R)-2-(hydroxymethyl)-6-[2-[3-(4-morpholinyl)propylamino]-2-oxoethyl]-3,6-dihydro-2H-pyran-3-yl]cyclobutanecarboxamide
C20H33N3O5 (395.24200880000006)
1-(4-fluorophenyl)-3-[(2R,3S,6R)-2-(hydroxymethyl)-6-[2-(4-morpholinyl)-2-oxoethyl]-3-oxanyl]urea
C19H26FN3O5 (395.18563980000005)
1-(4-fluorophenyl)-3-[(2R,3S,6S)-2-(hydroxymethyl)-6-[2-(4-morpholinyl)-2-oxoethyl]-3-oxanyl]urea
C19H26FN3O5 (395.18563980000005)
1-(4-fluorophenyl)-3-[(2S,3S,6S)-2-(hydroxymethyl)-6-[2-(4-morpholinyl)-2-oxoethyl]-3-oxanyl]urea
C19H26FN3O5 (395.18563980000005)
1-(4-fluorophenyl)-3-[(2S,3S,6R)-2-(hydroxymethyl)-6-[2-(4-morpholinyl)-2-oxoethyl]-3-oxanyl]urea
C19H26FN3O5 (395.18563980000005)
N-[(2R,3S,6R)-6-[2-[3-(dimethylamino)propylamino]-2-oxoethyl]-2-(hydroxymethyl)-3-oxanyl]-2-fluorobenzamide
N-[(2R,3R,6R)-6-[2-[3-(dimethylamino)propylamino]-2-oxoethyl]-2-(hydroxymethyl)-3-oxanyl]-2-fluorobenzamide
N-[(2S,3S,6R)-6-[2-[3-(dimethylamino)propylamino]-2-oxoethyl]-2-(hydroxymethyl)-3-oxanyl]-2-fluorobenzamide
N-[(2S,3R,6R)-2-(hydroxymethyl)-6-[2-oxo-2-[[(1R)-1-phenylethyl]amino]ethyl]-3,6-dihydro-2H-pyran-3-yl]-3-pyridinecarboxamide
N-[(2R,3S,6S)-2-(hydroxymethyl)-6-[2-oxo-2-[[(1R)-1-phenylethyl]amino]ethyl]-3,6-dihydro-2H-pyran-3-yl]-3-pyridinecarboxamide
N-[(2S,3R,6S)-2-(hydroxymethyl)-6-[2-oxo-2-[[(1S)-1-phenylethyl]amino]ethyl]-3,6-dihydro-2H-pyran-3-yl]-3-pyridinecarboxamide
N-[(2R,3S,6R)-2-(hydroxymethyl)-6-[2-oxo-2-[[(1S)-1-phenylethyl]amino]ethyl]-3,6-dihydro-2H-pyran-3-yl]-3-pyridinecarboxamide
N-[(2S,3S,6R)-2-(hydroxymethyl)-6-[2-oxo-2-[[(1R)-1-phenylethyl]amino]ethyl]-3,6-dihydro-2H-pyran-3-yl]-3-pyridinecarboxamide
N-[(2R,3R,6S)-2-(hydroxymethyl)-6-[2-oxo-2-[[(1R)-1-phenylethyl]amino]ethyl]-3,6-dihydro-2H-pyran-3-yl]-3-pyridinecarboxamide
N-[(2S,3S,6S)-2-(hydroxymethyl)-6-[2-oxo-2-[[(1R)-1-phenylethyl]amino]ethyl]-3,6-dihydro-2H-pyran-3-yl]-3-pyridinecarboxamide
N-[(2R,3R,6R)-2-(hydroxymethyl)-6-[2-oxo-2-[[(1S)-1-phenylethyl]amino]ethyl]-3,6-dihydro-2H-pyran-3-yl]-3-pyridinecarboxamide
N-[(2R,3R,6R)-2-(hydroxymethyl)-6-[2-oxo-2-[[(1R)-1-phenylethyl]amino]ethyl]-3,6-dihydro-2H-pyran-3-yl]-3-pyridinecarboxamide
N-cyclohexyl-2-[(2S,3R,6R)-2-(hydroxymethyl)-3-[[2-(4-morpholinyl)-1-oxoethyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C20H33N3O5 (395.24200880000006)
N-cyclohexyl-2-[(2S,3R,6S)-2-(hydroxymethyl)-3-[[2-(4-morpholinyl)-1-oxoethyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C20H33N3O5 (395.24200880000006)
N-cyclohexyl-2-[(2S,3S,6R)-2-(hydroxymethyl)-3-[[2-(4-morpholinyl)-1-oxoethyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C20H33N3O5 (395.24200880000006)
N-cyclohexyl-2-[(2R,3R,6S)-2-(hydroxymethyl)-3-[[2-(4-morpholinyl)-1-oxoethyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C20H33N3O5 (395.24200880000006)
N-cyclohexyl-2-[(2R,3R,6R)-2-(hydroxymethyl)-3-[[2-(4-morpholinyl)-1-oxoethyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C20H33N3O5 (395.24200880000006)
(2S,3S,4S)-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-1-[2-(4-morpholinyl)-1-oxoethyl]-2-azetidinecarbonitrile
C23H29N3O3 (395.22088040000006)
(2S,3R,4R)-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-1-[2-(4-morpholinyl)-1-oxoethyl]-2-azetidinecarbonitrile
C23H29N3O3 (395.22088040000006)
(2R,3S,4S)-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-1-[2-(4-morpholinyl)-1-oxoethyl]-2-azetidinecarbonitrile
C23H29N3O3 (395.22088040000006)
(2R,3S,4R)-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-1-[2-(4-morpholinyl)-1-oxoethyl]-2-azetidinecarbonitrile
C23H29N3O3 (395.22088040000006)
N-[[(2S,3R,4S)-1-acetyl-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-N-(2-methylpropyl)-2-pyridinecarboxamide
C23H29N3O3 (395.22088040000006)
N-[[(2R,3R,4S)-1-acetyl-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-N-(2-methylpropyl)-2-pyridinecarboxamide
C23H29N3O3 (395.22088040000006)
N-[[(2R,3S,4R)-1-acetyl-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-N-(2-methylpropyl)-2-pyridinecarboxamide
C23H29N3O3 (395.22088040000006)
N-[[(2S,3S,4S)-1-acetyl-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-N-(2-methylpropyl)-2-pyridinecarboxamide
C23H29N3O3 (395.22088040000006)
N-[[(2R,3R,4R)-1-acetyl-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-N-(2-methylpropyl)-2-pyridinecarboxamide
C23H29N3O3 (395.22088040000006)
(2S,3R,4R)-2-[[benzoyl(methyl)amino]methyl]-4-(hydroxymethyl)-3-phenyl-N-propan-2-yl-1-azetidinecarboxamide
C23H29N3O3 (395.22088040000006)
N-[[(2S,3R,4S)-4-(hydroxymethyl)-3-(4-phenylphenyl)-2-azetidinyl]methyl]-2-(4-morpholinyl)acetamide
C23H29N3O3 (395.22088040000006)
N-[[(2R,3R,4R)-4-(hydroxymethyl)-3-(4-phenylphenyl)-2-azetidinyl]methyl]-2-(4-morpholinyl)acetamide
C23H29N3O3 (395.22088040000006)
1-[[(2S,3R,4R)-1-benzoyl-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-1-methyl-3-propylurea
C23H29N3O3 (395.22088040000006)
1-[[(2R,3S,4S)-1-benzoyl-4-(hydroxymethyl)-3-phenyl-2-azetidinyl]methyl]-1-methyl-3-propylurea
C23H29N3O3 (395.22088040000006)
(1R,2aR,8bR)-1-(hydroxymethyl)-2-[(3-methoxyphenyl)methyl]-N-propyl-1,2a,3,8b-tetrahydroazeto[2,3-c]quinoline-4-carboxamide
C23H29N3O3 (395.22088040000006)
(1S,2aS,8bS)-1-(hydroxymethyl)-2-[(3-methoxyphenyl)methyl]-N-propyl-1,2a,3,8b-tetrahydroazeto[2,3-c]quinoline-4-carboxamide
C23H29N3O3 (395.22088040000006)
(1S,2aR,8bR)-1-(hydroxymethyl)-2-[(3-methoxyphenyl)methyl]-N-propyl-1,2a,3,8b-tetrahydroazeto[2,3-c]quinoline-4-carboxamide
C23H29N3O3 (395.22088040000006)
4-[4-[(1R,5S)-6-[(3-methoxyphenyl)methyl]-3,6-diazabicyclo[3.1.1]heptan-7-yl]phenyl]benzonitrile
1-[(1R,5S)-7-[4-[(E)-2-phenylethenyl]phenyl]-3,6-diazabicyclo[3.1.1]heptan-3-yl]-2-pyridin-4-ylethanone
3-[4-[(1S,5R)-3-[(2-methoxyphenyl)methyl]-3,6-diazabicyclo[3.1.1]heptan-7-yl]phenyl]benzonitrile
(2R,3R)-1-acetyl-2-(hydroxymethyl)-N-(3-methoxyphenyl)-3-phenyl-1,6-diazaspiro[3.3]heptane-6-carboxamide
(2S,3R)-1-acetyl-2-(hydroxymethyl)-N-(3-methoxyphenyl)-3-phenyl-1,6-diazaspiro[3.3]heptane-6-carboxamide
(2R,3S)-1-acetyl-2-(hydroxymethyl)-N-(3-methoxyphenyl)-3-phenyl-1,6-diazaspiro[3.3]heptane-6-carboxamide
[(1R)-1-[(2-fluorophenyl)methyl]-7-methoxy-9-methyl-1-spiro[2,3-dihydro-1H-pyrido[3,4-b]indole-4,3-azetidine]yl]methanol
1-[(2S,3S)-2-(hydroxymethyl)-1-(2-methoxy-1-oxoethyl)-3-phenyl-1,6-diazaspiro[3.3]heptan-6-yl]-2-(2-pyridinyl)ethanone
N-(2-aminoethyl)-4,6-dinitro-N-(2,2,6,6-tetramethyl-1-oxido-piperidin-4-yl)benzene-1,3-diamine
1-[(3R,3aR)-3-[(1S)-1-hydroxy-2-phenylethyl]-3,3a,6,7-tetrahydro-1H-cyclohepta[c]pyrrol-2-yl]-1-cyclohexanecarboxylic acid methyl ester
5-aminopentyl 3-O-(beta-L-rhamnopyranosyl)-beta-D-glucopyranoside
C17H33NO9 (395.21552080000004)
5-aminopentyl alpha-L-rhamnopyranosyl-(1->3)-alpha-L-rhamnopyranoside
C17H33NO9 (395.21552080000004)
1-[2-(3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-1-yl)ethyl]-4-(4-fluorobenzoyl)piperidinium
2-aminoethyl [2-hydroxy-3-[(Z)-tridec-9-enoxy]propyl] hydrogen phosphate
C18H38NO6P (395.24366180000004)
2-[[(E)-2-acetamido-3-hydroxydec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-(butanoylamino)-3-hydroxyoct-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-(propanoylamino)non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
Ketanserin
C22H22FN3O3 (395.16451140000004)
C - Cardiovascular system > C02 - Antihypertensives > C02K - Other antihypertensives > C02KD - Serotonin antagonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Ketanserin is a selective 5-HT2 receptor antagonist. Ketanserin also blocks hERG current (IhERG) in a concentration-dependent manner (IC50=0.11 μM).
N-[3-benzyl-5-(4-hydroxyphenyl)pyrazin-2-yl]-2-phenylacetamide
3-farnesyl-3-hydroxy-2-methyl-1-oxo-1lambda(5)-quinolin-4-one
A member of the class of quinoline N-oxides that is 3-hydroxy-2-methyl-1-oxo-1lambda(5)-quinolin-4-one carrying an additional (2E,6E)-farnesyl group at position 3.
pregnenolone sulfate(1-)
A steroid sulfate oxoanion that is the conjugate base of pregnenolone sulfate, obtained by deprotonation of the sulfo group; major species at pH 7.3.
1-(9E-decenyl)-sn-glycero-3-phosphocholine
C18H38NO6P (395.24366180000004)
aurachin A
An A-type aurichin that is 1,2-dihydrofuro[2,3-c]quinoline 5-oxide which is substituted at position 2 by a (6E)-10-hydroxy-2,6-dimethylundeca-2,6-dien-10-yl group and at position 4 by a methyl group (relative configuration shown). Found in the myxobacterium Stigmatella aurantiaca strain Sg a15.
Abanoquil
Abanoquil (U-K52046), an potent and selective α-1 adrenoceptor antagonist, is an anti-arrhythmic agent. Abanoquil can be used for erectile dysfunction research[1][2].
(2s)-4,9-dihydroxy-2-(2-hydroxypropan-2-yl)-11-(3-methylbut-2-en-1-yl)-2h,3h,10h-furo[3,2-b]acridin-5-one
(1r,4s,7s,9r)-16-acetyl-6-hydroxy-4-isopropyl-9-(2-methylbut-3-en-2-yl)-2,5,16-triazatetracyclo[7.7.0.0²,⁷.0¹⁰,¹⁵]hexadeca-5,10,12,14-tetraen-3-one
C23H29N3O3 (395.22088040000006)
(1s,8z,10s,13r,15r)-15-hydroxy-15-[(4s)-2-hydroxy-4,5-dihydro-1,3-thiazol-4-yl]-5,10-dimethyl-2,14-dioxabicyclo[11.3.1]heptadeca-4,8-dien-3-one
C20H29NO5S (395.17663440000007)
(1s,12s,13r,14r,15e,17r)-13-(ethoxycarbonyl)-15-ethylidene-5-methoxy-3,17-dimethyl-3,17-diazapentacyclo[12.3.1.0²,¹⁰.0⁴,⁹.0¹²,¹⁷]octadeca-2(10),4,6,8-tetraen-17-ium
[C24H31N2O3]+ (395.23345559999996)
[(2r,3r,4s,6e)-2-amino-1,3-dihydroxyoctadec-6-en-4-yl]oxysulfonic acid
C18H37NO6S (395.23414620000005)
4-ethylidene-7-hydroxy-6,7-dimethyl-3,8-dioxo-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadecan-12-yl acetate
3-[(2e,4e,6e)-6,8-dimethyldeca-2,4,6-trienoyl]-1,4-dihydroxy-5-(4-hydroxyphenyl)pyridin-2-one
(1r,7ar)-7-({[(2r)-2-hydroxy-2-[(1s)-1-hydroxyethyl]-3-methylbutanoyl]oxy}methyl)-2,3,5,7a-tetrahydro-1h-pyrrolizin-1-yl 2,3-dimethylbut-2-enoate
C21H33NO6 (395.23077580000006)
(13r)-13-[(2r,3r,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]tridecane-1,2,7,9,13-pentol
5-[(8as)-6-(3,4-dimethoxyphenyl)-8a-methyl-2,3,5,8-tetrahydro-1h-indolizin-7-yl]-2-methoxyphenol
C24H29NO4 (395.20964740000005)
1-hydroxy-3-{[6-methoxy-2-(3-methylbut-2-enoyl)-1h-indol-3-yl]methyl}-3h,6h,7h,8h,8ah-pyrrolo[1,2-a]pyrazin-4-one
15-hydroxy-15-(2-hydroxy-4,5-dihydro-1,3-thiazol-4-yl)-5,10-dimethyl-2,14-dioxabicyclo[11.3.1]heptadeca-4,8-dien-3-one
C20H29NO5S (395.17663440000007)