Exact Mass: 394.2722206000001

Exact Mass Matches: 394.2722206000001

Found 123 metabolites which its exact mass value is equals to given mass value 394.2722206000001, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Tylactone

Tylactone; Protylonolide

C23H38O5 (394.2719098)


A 16-membererd macrolide that is the aglycone of the antibiotic 5-O-beta-D-mycaminosyltylactone.

   

11-Hydroxyeicosatetraenoate glyceryl ester

1,3-Dihydroxypropan-2-yl (5Z,8Z,11S,12E,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoic acid

C23H38O5 (394.2719098)


11(R)-HETE is produced from arachidonic acid by both COX-1 and COX-2 (cyclooxygenases). Using a model of intestinal epithelial cells that express the COX-2 permanently, 11(R)-HETE is produced upon stimulation. However, 11(R)-HETE is not detected in intact cells. Endothelial cells release several factors which influence vascular tone, leukocyte function and platelet aggregation; 11(R)-HETE is one of these factors. (PMID: 15964853, 8555273) [HMDB] 11(R)-HETE is produced from arachidonic acid by both COX-1 and COX-2 (cyclooxygenases). Using a model of intestinal epithelial cells that express the COX-2 permanently, 11(R)-HETE is produced upon stimulation. However, 11(R)-HETE is not detected in intact cells. Endothelial cells release several factors which influence vascular tone, leukocyte function and platelet aggregation; 11(R)-HETE is one of these factors. (PMID: 15964853, 8555273).

   

2-(14,15-Epoxyeicosatrienoyl) Glycerol

1,3-dihydroxypropan-2-yl (5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoate

C23H38O5 (394.2719098)


2-(14,15-Epoxyeicosatrienoyl) glycerol, or 2-14,15-EG, is a cytochrome P450 metabolite of 2-arachidonoyl glycerol in the kidney (PMID: 17283047). 2-Arachidonoyl glycerol (2-AG) is an endogenous central cannabinoid (CB1) receptor agonist that is present at relatively high levels in the central nervous system (PMID: 9285589, 9915812, 9650580). 2-AG is hydrolyzed by the enzyme monoacylglycerol lipase, terminating its biological activity, and metabolism by cyclooxygenase-2 and lipoxygenases has been documented (PMID: 12136125, 12052037). The related endocannabinoid, 2-arachidonoyl ethanolamide (AEA), can be metabolized by cytochrome P450 (CYP450) enzymes in human liver and kidney to a number of epoxy-ethanolamide derivatives (PMID: 17272674). 2-14,15-EG is a potent mitogen for renal epithelial cells, increasing DNA synthesis in LLCPKcl4 cells at concentrations as low as 100 nM and doubling cell proliferation rates at 1 µM (PMID: 17283047). In these cells, 2-14,15-EG activates the metalloprotease ADAM17, which cleaves proTGF-α and releases TGF-α as a ligand that initiates the EGFR-ERK signalling pathway. 2-Arachidonoyl glycerol (2-AG) is an endogenous central cannabinoid (CB1) receptor agonist that is present at relatively high levels in the central nervous system.1,2,3 2-AG is hydrolyzed by the enzyme monoacylglycerol lipase, terminating its biological activity, and metabolism by cyclooxygenase-2 and lipoxygenases has been documented.4,5 The related endocannabinoid, 2-arachidonoyl ethanolamide (AEA), can be metabolized by cytochrome P450 (CYP450) enzymes in human liver and kidney to a number of epoxy-ethanolamide derivatives.6 2-14,15-EG is a novel CYP450 metabolite of 2-AG in the kidney.7 2-14,15-EG is a potent mitogen for renal epithelial cells, increasing DNA synthesis in LLCPKcl4 cells at concentrations as low as 100 nM and doubling cell proliferation rates at 1 ?M.7 In these cells, 2-14,15-EG activates the metalloprotease ADAM17, which cleaves proTGF-α and releases TGF-α as a ligand that initiates the EGFR-ERK signalling pathway. [HMDB]

   

gemeprost

methyl 7-[3-hydroxy-2-(3-hydroxy-4,4-dimethyloct-1-en-1-yl)-5-oxocyclopentyl]hept-2-enoate

C23H38O5 (394.2719098)


   

Norcholic acid

3-{5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl}butanoic acid

C23H38O5 (394.2719098)


Norcholic acid is a normal minorbile C23 bile acid having four side chain and exsits in human urine and meconium. Norcholic acid can become prominent under certain pathological conditions. Norcholic acid is efficiently absorbed from intestine and quickly excreted into the bile but not into urine[1].

   

MG(20:3(5Z,8Z,11Z)-O(14R,15S)/0:0/0:0)

(2S)-2,3-Dihydroxypropyl (5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoic acid

C23H38O5 (394.2719098)


MG(20:3(5Z,8Z,11Z)-O(14R,15S)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(20:3(5Z,8Z,14Z)-O(11S,12R)/0:0/0:0)

(2S)-2,3-Dihydroxypropyl (5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoic acid

C23H38O5 (394.2719098)


MG(20:3(5Z,8Z,14Z)-O(11S,12R)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(20:3(5Z,11Z,14Z)-O(8,9)/0:0/0:0)

(2S)-2,3-Dihydroxypropyl (5Z)-7-{3-[(5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoic acid

C23H38O5 (394.2719098)


MG(20:3(5Z,11Z,14Z)-O(8,9)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(20:3(8Z,11Z,14Z)-O(5,6)/0:0/0:0)

(2S)-2,3-Dihydroxypropyl 4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoic acid

C23H38O5 (394.2719098)


MG(20:3(8Z,11Z,14Z)-O(5,6)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(20:4(5Z,8Z,11Z,14Z)-OH(20)/0:0/0:0)

(2S)-2,3-dihydroxypropyl (5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoate

C23H38O5 (394.2719098)


MG(20:4(5Z,8Z,11Z,14Z)-OH(20)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(20:4(6E,8Z,11Z,14Z)-OH(5S)/0:0/0:0)

(2S)-2,3-Dihydroxypropyl (5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoic acid

C23H38O5 (394.2719098)


MG(20:4(6E,8Z,11Z,14Z)-OH(5S)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/0:0/0:0)

(2S)-2,3-dihydroxypropyl (5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoate

C23H38O5 (394.2719098)


MG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/0:0/0:0)

(2S)-2,3-dihydroxypropyl (5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoate

C23H38O5 (394.2719098)


MG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(20:4(5Z,8Z,11Z,14Z)-OH(17)/0:0/0:0)

(2S)-2,3-dihydroxypropyl (5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoate

C23H38O5 (394.2719098)


MG(20:4(5Z,8Z,11Z,14Z)-OH(17)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/0:0/0:0)

(2S)-2,3-dihydroxypropyl (5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoate

C23H38O5 (394.2719098)


MG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(20:4(5Z,8Z,11Z,13E)-OH(15S)/0:0/0:0)

(2S)-2,3-Dihydroxypropyl (5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoic acid

C23H38O5 (394.2719098)


MG(20:4(5Z,8Z,11Z,13E)-OH(15S)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(20:4(5Z,8Z,10E,14Z)-OH(12S)/0:0/0:0)

(2S)-2,3-dihydroxypropyl (5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoate

C23H38O5 (394.2719098)


MG(20:4(5Z,8Z,10E,14Z)-OH(12S)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(20:4(5E,8Z,12Z,14Z)-OH(11R)/0:0/0:0)

(2S)-2,3-Dihydroxypropyl (5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoic acid

C23H38O5 (394.2719098)


MG(20:4(5E,8Z,12Z,14Z)-OH(11R)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(20:4(5Z,7E,11Z,14Z)-OH(9)/0:0/0:0)

(2S)-2,3-Dihydroxypropyl (5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoic acid

C23H38O5 (394.2719098)


MG(20:4(5Z,7E,11Z,14Z)-OH(9)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:3(5Z,8Z,14Z)-O(11S,12R)/0:0)

1,3-dihydroxypropan-2-yl (5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoate

C23H38O5 (394.2719098)


MG(0:0/20:3(5Z,8Z,14Z)-O(11S,12R)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:3(5Z,11Z,14Z)-O(8,9)/0:0)

1,3-Dihydroxypropan-2-yl (5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoic acid

C23H38O5 (394.2719098)


MG(0:0/20:3(5Z,11Z,14Z)-O(8,9)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:3(8Z,11Z,14Z)-O(5,6)/0:0)

1,3-Dihydroxypropan-2-yl 4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoic acid

C23H38O5 (394.2719098)


MG(0:0/20:3(8Z,11Z,14Z)-O(5,6)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(20)/0:0)

1,3-Dihydroxypropan-2-yl (5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoic acid

C23H38O5 (394.2719098)


MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(20)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:4(6E,8Z,11Z,14Z)-OH(5S)/0:0)

1,3-Dihydroxypropan-2-yl (5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoic acid

C23H38O5 (394.2719098)


MG(0:0/20:4(6E,8Z,11Z,14Z)-OH(5S)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)/0:0)

1,3-Dihydroxypropan-2-yl (5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoic acid

C23H38O5 (394.2719098)


MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)/0:0)

1,3-Dihydroxypropan-2-yl (5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoic acid

C23H38O5 (394.2719098)


MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(17)/0:0)

1,3-Dihydroxypropan-2-yl (5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoic acid

C23H38O5 (394.2719098)


MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(17)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)/0:0)

1,3-Dihydroxypropan-2-yl (5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoic acid

C23H38O5 (394.2719098)


MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:4(5Z,8Z,11Z,13E)-OH(15S)/0:0)

1,3-dihydroxypropan-2-yl (5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoate

C23H38O5 (394.2719098)


MG(0:0/20:4(5Z,8Z,11Z,13E)-OH(15S)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:4(5Z,8Z,10E,14Z)-OH(12S)/0:0)

1,3-dihydroxypropan-2-yl (5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoate

C23H38O5 (394.2719098)


MG(0:0/20:4(5Z,8Z,10E,14Z)-OH(12S)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:4(5E,8Z,12Z,14Z)-OH(11R)/0:0)

1,3-Dihydroxypropan-2-yl (5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoic acid

C23H38O5 (394.2719098)


MG(0:0/20:4(5E,8Z,12Z,14Z)-OH(11R)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   

MG(0:0/20:4(5Z,7E,11Z,14Z)-OH(9)/0:0)

1,3-Dihydroxypropan-2-yl (5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoic acid

C23H38O5 (394.2719098)


MG(0:0/20:4(5Z,7E,11Z,14Z)-OH(9)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   

2-(14,15-epoxyeicosatrienoyl)glycerol

2-(14,15-epoxyeicosatrienoyl)glycerol

C23H38O5 (394.2719098)


   
   

1-acetoxy-6,7-epoxy-19-hydroxy-12-oxo-smallantha-2Z,13E-diene

1-acetoxy-6,7-epoxy-19-hydroxy-12-oxo-smallantha-2Z,13E-diene

C23H38O5 (394.2719098)


   

10-acetoxy-7,8-dimethylpodopyrone

10-acetoxy-7,8-dimethylpodopyrone

C23H38O5 (394.2719098)


   

(rel 5S,6R,8R,9R,10S,13S,15R)-6-acetoxy-9,13;15,16-diepoxy-15-methoxylabdane|(rel-5S,6R,8R,9R,10S,13S,15R)-6-acetoxy-9,13;15,16-diepoxy-15-methoxylabdane

(rel 5S,6R,8R,9R,10S,13S,15R)-6-acetoxy-9,13;15,16-diepoxy-15-methoxylabdane|(rel-5S,6R,8R,9R,10S,13S,15R)-6-acetoxy-9,13;15,16-diepoxy-15-methoxylabdane

C23H38O5 (394.2719098)


   

13(E)-8alpha-hydroxy-labd-13-en-15-ol malonate

13(E)-8alpha-hydroxy-labd-13-en-15-ol malonate

C23H38O5 (394.2719098)


   
   

18-acetyl-7alpha-hydroxy-methyltrineracetal

18-acetyl-7alpha-hydroxy-methyltrineracetal

C23H38O5 (394.2719098)


   

isolancerotetrol 5-isovalerate

isolancerotetrol 5-isovalerate

C23H38O5 (394.2719098)


   

methyl 3alpha-acetoxy-15-hydroxy-labd-8(17)-en-19-oate

methyl 3alpha-acetoxy-15-hydroxy-labd-8(17)-en-19-oate

C23H38O5 (394.2719098)


   

2alpha,3alpha,16beta-trihydroxy-20-acetoxy-20(R)-pregnane

2alpha,3alpha,16beta-trihydroxy-20-acetoxy-20(R)-pregnane

C23H38O5 (394.2719098)


   
   

2alpha,3alpha,20-trihydroxy-16beta-acetoxy-20(R)-pregnane

2alpha,3alpha,20-trihydroxy-16beta-acetoxy-20(R)-pregnane

C23H38O5 (394.2719098)


   
   

rel-(4R,4aR,5R,6R,9S,10S,12R,12aR)-3,4,4a,5,6,7,8,9,10,11,12,12a-dodecahydro-9-methoxy-1,6,10-trimethyl-4-(1-methylethyl)-5,12-epoxybenzocyclodecene-6,10-diol 6-acetate|sibogin B

rel-(4R,4aR,5R,6R,9S,10S,12R,12aR)-3,4,4a,5,6,7,8,9,10,11,12,12a-dodecahydro-9-methoxy-1,6,10-trimethyl-4-(1-methylethyl)-5,12-epoxybenzocyclodecene-6,10-diol 6-acetate|sibogin B

C23H38O5 (394.2719098)


   
   

(2R,3R,7R,20R)-2,7,20-trihydroxy-3,21-dimethoxy-5-pregnene|heligenin B

(2R,3R,7R,20R)-2,7,20-trihydroxy-3,21-dimethoxy-5-pregnene|heligenin B

C23H38O5 (394.2719098)


   

Peroxyacarnoic acid D

Peroxyacarnoic acid D

C23H38O5 (394.2719098)


   

12,20-dihydroxy-19-acetoxy-14-methylene geranyl nerol

12,20-dihydroxy-19-acetoxy-14-methylene geranyl nerol

C23H38O5 (394.2719098)


   

1-acetoxy-6,7-epoxy-19-hydroxy-12-oxo-smallantha-2Z,14(21)-diene

1-acetoxy-6,7-epoxy-19-hydroxy-12-oxo-smallantha-2Z,14(21)-diene

C23H38O5 (394.2719098)


   

1-acetoxy-12-hydroxy-2,3,6,7-bisepoxysmallantha-10E,14(21)-triene

1-acetoxy-12-hydroxy-2,3,6,7-bisepoxysmallantha-10E,14(21)-triene

C23H38O5 (394.2719098)


   

glyceryl (5R,10R,13R)-7-ketolabda-8-en-15-oate|Glyceryl ester-(ent-13S)-7-Oxo-8-labden-15-oic acid

glyceryl (5R,10R,13R)-7-ketolabda-8-en-15-oate|Glyceryl ester-(ent-13S)-7-Oxo-8-labden-15-oic acid

C23H38O5 (394.2719098)


   

Aspergillus acid D

Aspergillus acid D

C23H38O5 (394.2719098)


   

(S)-Butaprost (free acid)

(S)-Butaprost (free acid)

C23H38O5 (394.2719098)


   

(3R)-3-((3R,5S,7R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)butanoic acid

"(3R)-3-((3R,5S,7R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)butanoic acid"

C23H38O5 (394.2719098)


   

gemeprost

gemeprost

C23H38O5 (394.2719098)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents C78568 - Prostaglandin Analogue

   

8-sio Prostaglandin E2 isopropyl ester

8-sio Prostaglandin E2 isopropyl ester

C23H38O5 (394.2719098)


   

2-(14,15-Epoxyeicosatrienoyl) Glycerol

2-(14,15-Epoxyeicosatrienoyl) Glycerol

C23H38O5 (394.2719098)


   

(R)-Butaprost (free acid)

9-oxo-11α,16R-dihydroxy-17-cyclobutyl-prost-13E-en-1-oic acid

C23H38O5 (394.2719098)


   

Prostaglandin E2 isopropyl ester

9-oxo-11α,15S-dihydroxy-prosta-5Z,13E-dien-1-oic acid, isopropyl ester

C23H38O5 (394.2719098)


   

Butaprost (free acid)

9-oxo-11α,16S-dihydroxy-17-cyclobutyl-prost-13E-en-1-oic acid

C23H38O5 (394.2719098)


   

15-HETE-G

2-(15S-hydroxy-5Z,8Z,11Z,13E-eicosatetraenoyl)-sn-glycerol

C23H38O5 (394.2719098)


   

12-HETE-G

2-(12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoyl)-sn-glycerol

C23H38O5 (394.2719098)


   

11-HETE-g

1,3-dihydroxypropan-2-yl (5Z,8Z,11S,12E,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoate

C23H38O5 (394.2719098)


   

Latanoprost (free acid)-d4

Latanoprost (free acid)-d4

C23H30D4O5 (394.265720112)


   

MG 20:4;O

1-(2S-methoxy-12-methyloctadeca-7Z,17-dien-5-ynoyl)-sn-glycerol

C23H38O5 (394.2719098)


   

Norcholic acid

24-nor-3alpha,7alpha,12alpha-trihydroxy-5beta-cholan-23-oic acid

C23H38O5 (394.2719098)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Norcholic acid is a normal minorbile C23 bile acid having four side chain and exsits in human urine and meconium. Norcholic acid can become prominent under certain pathological conditions. Norcholic acid is efficiently absorbed from intestine and quickly excreted into the bile but not into urine[1].

   

ST 23:1;O5

24-nor-3alpha,7alpha,16alpha-trihydroxy-5beta-cholan-23-oic acid

C23H38O5 (394.2719098)


   

Hexadecyl 3,4,5-trihydroxybenzoate

Hexadecyl 3,4,5-trihydroxybenzoate

C23H38O5 (394.2719098)


   

sodium 1-(carboxymethyl)-4,5-dihydro-1(or 3)-(2-hydroxyethyl)-2-tridecyl-1H-imidazolium hydroxide

sodium 1-(carboxymethyl)-4,5-dihydro-1(or 3)-(2-hydroxyethyl)-2-tridecyl-1H-imidazolium hydroxide

C20H39N2NaO4 (394.2807374)


   

1-Ethoxy-2,3-difluoro-4-[[(trans,trans)-4-propyl[1,1-bicyclohexyl]-4-yl]methoxy]benzene

1-Ethoxy-2,3-difluoro-4-[[(trans,trans)-4-propyl[1,1-bicyclohexyl]-4-yl]methoxy]benzene

C24H36F2O2 (394.268322)


   

3-[(3R,10S,12S,13R,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]butanoic acid

3-[(3R,10S,12S,13R,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]butanoic acid

C23H38O5 (394.2719098)


   

2-glyceryl 11,12-epoxy-(5Z,8Z,14Z)-icosatrienoate

2-glyceryl 11,12-epoxy-(5Z,8Z,14Z)-icosatrienoate

C23H38O5 (394.2719098)


A 2-monoglyceride obtained by formal condensation of the carboxy group of 11,12-epoxy-(5Z,8Z,14Z)-icosatrienoic acid with the 2-hydroxy group of glycerol.

   

methyl (E)-7-[3-hydroxy-2-[(E)-3-hydroxy-4,4-dimethyloct-1-enyl]-5-oxocyclopentyl]hept-2-enoate

methyl (E)-7-[3-hydroxy-2-[(E)-3-hydroxy-4,4-dimethyloct-1-enyl]-5-oxocyclopentyl]hept-2-enoate

C23H38O5 (394.2719098)


   

MG(20:3(5Z,8Z,11Z)-O(14R,15S)/0:0/0:0)

MG(20:3(5Z,8Z,11Z)-O(14R,15S)/0:0/0:0)

C23H38O5 (394.2719098)


   

MG(20:3(5Z,8Z,14Z)-O(11S,12R)/0:0/0:0)

MG(20:3(5Z,8Z,14Z)-O(11S,12R)/0:0/0:0)

C23H38O5 (394.2719098)


   

MG(20:3(5Z,11Z,14Z)-O(8,9)/0:0/0:0)

MG(20:3(5Z,11Z,14Z)-O(8,9)/0:0/0:0)

C23H38O5 (394.2719098)


   

MG(20:3(8Z,11Z,14Z)-O(5,6)/0:0/0:0)

MG(20:3(8Z,11Z,14Z)-O(5,6)/0:0/0:0)

C23H38O5 (394.2719098)


   

MG(20:4(5Z,8Z,11Z,14Z)-OH(20)/0:0/0:0)

MG(20:4(5Z,8Z,11Z,14Z)-OH(20)/0:0/0:0)

C23H38O5 (394.2719098)


   

MG(20:4(6E,8Z,11Z,14Z)-OH(5S)/0:0/0:0)

MG(20:4(6E,8Z,11Z,14Z)-OH(5S)/0:0/0:0)

C23H38O5 (394.2719098)


   

MG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/0:0/0:0)

MG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/0:0/0:0)

C23H38O5 (394.2719098)


   

MG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/0:0/0:0)

MG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/0:0/0:0)

C23H38O5 (394.2719098)


   

MG(20:4(5Z,8Z,11Z,14Z)-OH(17)/0:0/0:0)

MG(20:4(5Z,8Z,11Z,14Z)-OH(17)/0:0/0:0)

C23H38O5 (394.2719098)


   

MG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/0:0/0:0)

MG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/0:0/0:0)

C23H38O5 (394.2719098)


   

MG(20:4(5Z,8Z,11Z,13E)-OH(15S)/0:0/0:0)

MG(20:4(5Z,8Z,11Z,13E)-OH(15S)/0:0/0:0)

C23H38O5 (394.2719098)


   

MG(20:4(5Z,8Z,10E,14Z)-OH(12S)/0:0/0:0)

MG(20:4(5Z,8Z,10E,14Z)-OH(12S)/0:0/0:0)

C23H38O5 (394.2719098)


   

MG(20:4(5E,8Z,12Z,14Z)-OH(11R)/0:0/0:0)

MG(20:4(5E,8Z,12Z,14Z)-OH(11R)/0:0/0:0)

C23H38O5 (394.2719098)


   

MG(20:4(5Z,7E,11Z,14Z)-OH(9)/0:0/0:0)

MG(20:4(5Z,7E,11Z,14Z)-OH(9)/0:0/0:0)

C23H38O5 (394.2719098)


   

MG(0:0/20:3(5Z,11Z,14Z)-O(8,9)/0:0)

MG(0:0/20:3(5Z,11Z,14Z)-O(8,9)/0:0)

C23H38O5 (394.2719098)


   

MG(0:0/20:3(8Z,11Z,14Z)-O(5,6)/0:0)

MG(0:0/20:3(8Z,11Z,14Z)-O(5,6)/0:0)

C23H38O5 (394.2719098)


   

MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(20)/0:0)

MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(20)/0:0)

C23H38O5 (394.2719098)


   

MG(0:0/20:4(6E,8Z,11Z,14Z)-OH(5S)/0:0)

MG(0:0/20:4(6E,8Z,11Z,14Z)-OH(5S)/0:0)

C23H38O5 (394.2719098)


   

MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)/0:0)

MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)/0:0)

C23H38O5 (394.2719098)


   

MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)/0:0)

MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)/0:0)

C23H38O5 (394.2719098)


   

MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(17)/0:0)

MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(17)/0:0)

C23H38O5 (394.2719098)


   

MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)/0:0)

MG(0:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)/0:0)

C23H38O5 (394.2719098)


   

MG(0:0/20:4(5E,8Z,12Z,14Z)-OH(11R)/0:0)

MG(0:0/20:4(5E,8Z,12Z,14Z)-OH(11R)/0:0)

C23H38O5 (394.2719098)


   

MG(0:0/20:4(5Z,7E,11Z,14Z)-OH(9)/0:0)

MG(0:0/20:4(5Z,7E,11Z,14Z)-OH(9)/0:0)

C23H38O5 (394.2719098)


   

1-O-palmityl-2-desoxy-2-amino-sn-glycero-3-phosphate(1-)

1-O-palmityl-2-desoxy-2-amino-sn-glycero-3-phosphate(1-)

C19H41NO5P- (394.2722206000001)


   

(4aS,4aalpha)-Decahydro-2,5beta-dimethyl-8abeta-methoxymethoxymethyl-5alpha-(4-methyl-3-pentenyl)-1-oxonaphthalene-2xi-carboxylic acid methyl ester

(4aS,4aalpha)-Decahydro-2,5beta-dimethyl-8abeta-methoxymethoxymethyl-5alpha-(4-methyl-3-pentenyl)-1-oxonaphthalene-2xi-carboxylic acid methyl ester

C23H38O5 (394.2719098)


   

(1-butanoyloxy-3-hydroxypropan-2-yl) (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

(1-butanoyloxy-3-hydroxypropan-2-yl) (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C23H38O5 (394.2719098)


   

(1-acetyloxy-3-hydroxypropan-2-yl) (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

(1-acetyloxy-3-hydroxypropan-2-yl) (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C23H38O5 (394.2719098)


   

11-Hydroxyeicosatetraenoate glyceryl ester

11-Hydroxyeicosatetraenoate glyceryl ester

C23H38O5 (394.2719098)


   

Norhyocholic acid

Norhyocholic acid

C23H38O5 (394.2719098)


   

Nor-beta-muricholic acid

Nor-beta-muricholic acid

C23H38O5 (394.2719098)


   

Nor-alpha-muricholic acid

Nor-alpha-muricholic acid

C23H38O5 (394.2719098)


   

Noravicholic acid

Noravicholic acid

C23H38O5 (394.2719098)


   

Nor-omega-muricholic acid

24-nor-3alpha,6alpha,7beta-trihydroxy-5beta-cholan-23-oic acid

C23H38O5 (394.2719098)


   

2-glyceryl 14,15-epoxy-(5Z,8Z,11Z)-icosatrienoate

2-glyceryl 14,15-epoxy-(5Z,8Z,11Z)-icosatrienoate

C23H38O5 (394.2719098)


A 2-monoglyceride obtained by formal condensation of the carboxy group of 14,15-EET with the 2-hydroxy group of glycerol.

   

DG(20:3)

DG(10:0_10:3)

C23H38O5 (394.2719098)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

1-hydroxy-1-(1-hydroxyethyl)-7,7-dimethoxy-9a,11a-dimethyl-dodecahydrocyclopenta[a]phenanthren-2-one

1-hydroxy-1-(1-hydroxyethyl)-7,7-dimethoxy-9a,11a-dimethyl-dodecahydrocyclopenta[a]phenanthren-2-one

C23H38O5 (394.2719098)


   

1,3-dihydroxypropan-2-yl 5-(3-hydroxy-1,2,4a,5-tetramethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl)-3-methylpent-2-enoate

1,3-dihydroxypropan-2-yl 5-(3-hydroxy-1,2,4a,5-tetramethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl)-3-methylpent-2-enoate

C23H38O5 (394.2719098)


   

(2s)-2,3-dihydroxypropyl (2s,7z)-2-methoxy-12-methyloctadeca-7,17-dien-5-ynoate

(2s)-2,3-dihydroxypropyl (2s,7z)-2-methoxy-12-methyloctadeca-7,17-dien-5-ynoate

C23H38O5 (394.2719098)


   

(3-{2-[3-(5-hydroxy-4,8-dimethyl-7-methylidenenon-3-en-1-yl)-3-methyloxiran-2-yl]ethyl}-3-methyloxiran-2-yl)methyl acetate

(3-{2-[3-(5-hydroxy-4,8-dimethyl-7-methylidenenon-3-en-1-yl)-3-methyloxiran-2-yl]ethyl}-3-methyloxiran-2-yl)methyl acetate

C23H38O5 (394.2719098)


   

(1s,2s,4s,4ar,5's,5''r,8ar)-5''-methoxy-2,5,5,8a-tetramethyl-hexahydro-2h-dispiro[naphthalene-1,2':5',3''-bis(oxolane)]-4-yl acetate

(1s,2s,4s,4ar,5's,5''r,8ar)-5''-methoxy-2,5,5,8a-tetramethyl-hexahydro-2h-dispiro[naphthalene-1,2':5',3''-bis(oxolane)]-4-yl acetate

C23H38O5 (394.2719098)


   

(1s,2s,4s,4ar,5'r,5''s,8ar)-5''-methoxy-2,5,5,8a-tetramethyl-hexahydro-2h-dispiro[naphthalene-1,2':5',3''-bis(oxolane)]-4-yl acetate

(1s,2s,4s,4ar,5'r,5''s,8ar)-5''-methoxy-2,5,5,8a-tetramethyl-hexahydro-2h-dispiro[naphthalene-1,2':5',3''-bis(oxolane)]-4-yl acetate

C23H38O5 (394.2719098)


   

3-{[(4ar,5s,6r,8ar)-5-[(3s)-5-hydroxy-3-methylpentyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl]methoxy}-3-oxopropanoic acid

3-{[(4ar,5s,6r,8ar)-5-[(3s)-5-hydroxy-3-methylpentyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl]methoxy}-3-oxopropanoic acid

C23H38O5 (394.2719098)


   

3-{[5-(2-hydroxy-2,5,5,8a-tetramethyl-hexahydro-1h-naphthalen-1-yl)-3-methylpent-2-en-1-yl]oxy}-3-oxopropanoic acid

3-{[5-(2-hydroxy-2,5,5,8a-tetramethyl-hexahydro-1h-naphthalen-1-yl)-3-methylpent-2-en-1-yl]oxy}-3-oxopropanoic acid

C23H38O5 (394.2719098)