Exact Mass: 365.29297840000004

Exact Mass Matches: 365.29297840000004

Found 92 metabolites which its exact mass value is equals to given mass value 365.29297840000004, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

N-Linoleoyl GABA

4-{[(9Z,12Z)-1-hydroxyoctadeca-9,12-dien-1-ylidene]amino}butanoic acid

C22H39NO3 (365.29297840000004)


N-Linoleoyl GABA is also known as GABA linoleamide or Gabalid. N-Linoleoyl GABA is considered to be practically insoluble (in water) and acidic

   

Tetradeca-7,9,11-trienoylcarnitine

3-(tetradeca-7,9,11-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-7,9,11-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-7,9,11-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-7,9,11-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-7,9,11-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-3,5,7-trienoylcarnitine

3-(tetradeca-3,5,7-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-3,5,7-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-3,5,7-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-3,5,7-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-3,5,7-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-8,10,12-trienoylcarnitine

3-(tetradeca-8,10,12-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-8,10,12-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-8,10,12-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-8,10,12-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-8,10,12-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-4,7,10-trienoylcarnitine

3-(tetradeca-4,7,10-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-4,7,10-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-4,7,10-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-4,7,10-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-4,7,10-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-4,6,8-trienoylcarnitine

3-(tetradeca-4,6,8-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-4,6,8-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-4,6,8-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-4,6,8-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-4,6,8-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-6,9,12-trienoylcarnitine

3-(tetradeca-6,9,12-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-6,9,12-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-6,9,12-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-6,9,12-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-6,9,12-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-5,7,9-trienoylcarnitine

3-(tetradeca-5,7,9-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-5,7,9-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-5,7,9-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-5,7,9-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-5,7,9-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-5,8,11-trienoylcarnitine

3-(tetradeca-5,8,11-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-5,8,11-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-5,8,11-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-5,8,11-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-5,8,11-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-2,5,8-trienoylcarnitine

3-(tetradeca-2,5,8-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-2,5,8-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-2,5,8-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-2,5,8-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-2,5,8-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-6,8,10-trienoylcarnitine

3-(tetradeca-6,8,10-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-6,8,10-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-6,8,10-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-6,8,10-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-6,8,10-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4Z,10Z,12E)-Tetradeca-4,10,12-trienoylcarnitine

3-(tetradeca-4,10,12-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


(4Z,10Z,12E)-Tetradeca-4,10,12-trienoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,10Z,12E)-tetradeca-4,10,12-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,10Z,12E)-Tetradeca-4,10,12-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (4Z,10Z,12E)-Tetradeca-4,10,12-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-3,6,9-trienoylcarnitine

3-(tetradeca-3,6,9-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-3,6,9-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-3,6,9-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-3,6,9-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-3,6,9-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-2,4,6-trienoylcarnitine

3-(tetradeca-2,4,6-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-2,4,6-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-2,4,6-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-2,4,6-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-2,4,6-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Myristoyl Histidine

2-[(1-Oxotetradecyl)amino]-3-(1H-imidazole-4-yl)propanoic acid

C20H35N3O3 (365.267828)


N-myristoyl histidine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Myristic acid amide of Histidine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Myristoyl Histidine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Myristoyl Histidine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

Arachidonyl-2-chloroethylamide

N-(2-chloroethyl)icosa-5,8,11,14-tetraenamide

C22H36ClNO (365.24852760000005)


   

2-Chloro-N-icosa-5,8,11,14-tetraenylacetamide

2-Chloro-N-(icosa-5,8,11,14-tetraen-1-yl)ethanimidate

C22H36ClNO (365.24852760000005)


   

(15Z)-tetracosenoate

cis-Delta(15)-tetracosenoic acid

C24H45O2 (365.341937)


(15z)-tetracosenoate, also known as nervonate or (Z)-15-tetracosenoic acid, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms (15z)-tetracosenoate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). (15z)-tetracosenoate can be found in a number of food items such as flaxseed, star fruit, sweet basil, and breadnut tree seed, which makes (15z)-tetracosenoate a potential biomarker for the consumption of these food products.

   
   
   

APINACA

1-Pentyl-N-tricyclo[3.3.1.1(3,7)]dec-1-yl-1H-indazole-3-carboxamide

C23H31N3O (365.2466996)


   

12-Oxo-2t-octadecansaeurepiperidid|Lycaonic acid piperidide

12-Oxo-2t-octadecansaeurepiperidid|Lycaonic acid piperidide

C23H43NO2 (365.3293618)


   

Oxime-(3alpha,5alpha,20S)-3,20,21-Trihydroxypregnan-11-one

Oxime-(3alpha,5alpha,20S)-3,20,21-Trihydroxypregnan-11-one

C21H35NO4 (365.25659500000006)


   
   
   

Melophlin P

Melophlin P

C22H39NO3 (365.29297840000004)


A member of the class of pyrrolidin-2-ones that is 1,5-dimethylpyrrolidine-2,4-dione substituted by a 1-hydroxyhexadecylidene moiety at position 3. Isolated from the marine sponge Melophlus sarasinorum and other species of genus Melophlus, it exhibits cytotoxicity against murine leukemia cell line.

   

N-(2-chloroethyl)icosa-5,8,11,14-tetraenamide

N-(2-chloroethyl)icosa-5,8,11,14-tetraenamide

C22H36ClNO (365.24852760000005)


   

1-Methyl-2-(6,9-pentadecadienyl)-4(1H)-quinolinone

1-Methyl-2-((6Z,9Z)-pentadeca-6,9-dien-1-yl)quinolin-4(1H)-one

C25H35NO (365.27185000000003)


   
   

C18:1-9 cis-(L)-HSL

N-(tetrahydro-2-oxo-3-furanyl)-9Z-octadecenamide

C22H39NO3 (365.29297840000004)


   

2-chloro-AEA

N-(2-chloroethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide

C22H36ClNO (365.24852760000005)


   

AKB48

1-Pentyl-N-tricyclo[3.3.1.1(3,7)]dec-1-yl-1H-indazole-3-carboxamide

C23H31N3O (365.2466996)


   
   
   

8-iso Prostaglandin F1a-d9

8-iso Prostaglandin F1a-d9

C20H27D9O5 (365.312755202)


   

(+/-) 5-iPF2alpha-VI-(d11)

5,9S,11R-trihydroxy-6E,14Z-prostadienoic acid-cyclo[8S,12R]-(d11)

C20H23D11O5 (365.30966035800003)


   

NAE 21:2

N-(2-methyl-2Z,6E-eicosadienoyl)-ethanolamine

C23H43NO2 (365.3293618)


   

(2-hydroxyethyl)(2-hydroxyhexadecyl)dimethylammonium chloride

(2-hydroxyethyl)(2-hydroxyhexadecyl)dimethylammonium chloride

C20H44ClNO2 (365.30603940000003)


   

ethyl hydroxymethyl oleyl oxazoline

ethyl hydroxymethyl oleyl oxazoline

C23H43NO2 (365.3293618)


   
   

p-pentyloxybenzylidene p-heptylaniline

p-pentyloxybenzylidene p-heptylaniline

C25H35NO (365.27185000000003)


   

TRIS(I-PROPYLCYCLOPENTADIENYL)PRASEODYMIUM

TRIS(I-PROPYLCYCLOPENTADIENYL)PRASEODYMIUM

C27H41 (365.3208086)


   

p-butoxybenzylidene-p-octylaniline

p-butoxybenzylidene-p-octylaniline

C25H35NO (365.27185000000003)


   
   

(15Z)-Tetracosenoate

(15Z)-Tetracosenoate

C24H45O2- (365.341937)


A tetracosenoate that is the conjugate base of nervonic acid, arising from deprotonation of the carboxylic acid group.

   

2-Chloro-N-icosa-5,8,11,14-tetraenylacetamide

2-Chloro-N-icosa-5,8,11,14-tetraenylacetamide

C22H36ClNO (365.24852760000005)


   

Arachidonyl-2-(chloroethyl-d4)amide

Arachidonyl-2-(chloroethyl-d4)amide

C22H36ClNO (365.24852760000005)


   

Tetradeca-3,5,7-trienoylcarnitine

Tetradeca-3,5,7-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-4,6,8-trienoylcarnitine

Tetradeca-4,6,8-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-5,7,9-trienoylcarnitine

Tetradeca-5,7,9-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-2,5,8-trienoylcarnitine

Tetradeca-2,5,8-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-3,6,9-trienoylcarnitine

Tetradeca-3,6,9-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-2,4,6-trienoylcarnitine

Tetradeca-2,4,6-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-7,9,11-trienoylcarnitine

Tetradeca-7,9,11-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-4,7,10-trienoylcarnitine

Tetradeca-4,7,10-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-6,9,12-trienoylcarnitine

Tetradeca-6,9,12-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-5,8,11-trienoylcarnitine

Tetradeca-5,8,11-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-6,8,10-trienoylcarnitine

Tetradeca-6,8,10-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-8,10,12-trienoylcarnitine

Tetradeca-8,10,12-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

(4Z,10Z,12E)-Tetradeca-4,10,12-trienoylcarnitine

(4Z,10Z,12E)-Tetradeca-4,10,12-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

[(2R,3S,4S)-4-[(propan-2-ylamino)methyl]-3-[4-[(E)-prop-1-enyl]phenyl]-1-(pyridin-3-ylmethyl)azetidin-2-yl]methanol

[(2R,3S,4S)-4-[(propan-2-ylamino)methyl]-3-[4-[(E)-prop-1-enyl]phenyl]-1-(pyridin-3-ylmethyl)azetidin-2-yl]methanol

C23H31N3O (365.2466996)


   

N-[(4E,8E,12E)-1,3-dihydroxyicosa-4,8,12-trien-2-yl]acetamide

N-[(4E,8E,12E)-1,3-dihydroxyicosa-4,8,12-trien-2-yl]acetamide

C22H39NO3 (365.29297840000004)


   

N-[(4E,8E,12E)-1,3-dihydroxypentadeca-4,8,12-trien-2-yl]heptanamide

N-[(4E,8E,12E)-1,3-dihydroxypentadeca-4,8,12-trien-2-yl]heptanamide

C22H39NO3 (365.29297840000004)


   

N-[(4E,8E,12E)-1,3-dihydroxytetradeca-4,8,12-trien-2-yl]octanamide

N-[(4E,8E,12E)-1,3-dihydroxytetradeca-4,8,12-trien-2-yl]octanamide

C22H39NO3 (365.29297840000004)


   

N-[(4E,8E,12E)-1,3-dihydroxynonadeca-4,8,12-trien-2-yl]propanamide

N-[(4E,8E,12E)-1,3-dihydroxynonadeca-4,8,12-trien-2-yl]propanamide

C22H39NO3 (365.29297840000004)


   

N-[(4E,8E,12E)-1,3-dihydroxyhexadeca-4,8,12-trien-2-yl]hexanamide

N-[(4E,8E,12E)-1,3-dihydroxyhexadeca-4,8,12-trien-2-yl]hexanamide

C22H39NO3 (365.29297840000004)


   

N-[(4E,8E,12E)-1,3-dihydroxyheptadeca-4,8,12-trien-2-yl]pentanamide

N-[(4E,8E,12E)-1,3-dihydroxyheptadeca-4,8,12-trien-2-yl]pentanamide

C22H39NO3 (365.29297840000004)


   

N-[(4E,8E,12E)-1,3-dihydroxyoctadeca-4,8,12-trien-2-yl]butanamide

N-[(4E,8E,12E)-1,3-dihydroxyoctadeca-4,8,12-trien-2-yl]butanamide

C22H39NO3 (365.29297840000004)


   

(11Z,14Z)-N-(2-hydroxyethyl)henicosa-11,14-dienamide

(11Z,14Z)-N-(2-hydroxyethyl)henicosa-11,14-dienamide

C23H43NO2 (365.3293618)


   

6-Hydroxy-3,4-dihydro-2,5,7,8-tetramethyl-2-[2-[(3-isopropylamino-2-hydroxypropyl)oxy]ethyl]-2H-1-benzopyran

6-Hydroxy-3,4-dihydro-2,5,7,8-tetramethyl-2-[2-[(3-isopropylamino-2-hydroxypropyl)oxy]ethyl]-2H-1-benzopyran

C21H35NO4 (365.25659500000006)


   

tetracosenoate

tetracosenoate

C24H45O2 (365.341937)


A monounsaturated fatty acid anion that is the conjugate base of tetracosenoic acid, arising from deprotonation of the carboxylic acid group. Major species at pH 7.3.

   

AcCa(14:3)

AcCa(14:3)

C21H35NO4 (365.25659500000006)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   

Heneicosadienoyl-EA

Heneicosadienoyl-EA

C23H43NO2 (365.3293618)


   
   

n-(2-hydroxyethyl)-2-methylicosa-2,6-dienimidic acid

n-(2-hydroxyethyl)-2-methylicosa-2,6-dienimidic acid

C23H43NO2 (365.3293618)


   

1-(piperidin-1-yl)octadecane-1,12-dione

1-(piperidin-1-yl)octadecane-1,12-dione

C23H43NO2 (365.3293618)


   

1-(1-decanoylpyrrolidin-2-yl)propan-2-yl (2e)-2-methylbut-2-enoate

1-(1-decanoylpyrrolidin-2-yl)propan-2-yl (2e)-2-methylbut-2-enoate

C22H39NO3 (365.29297840000004)


   

(2e,6e)-n-(2-hydroxyethyl)-2-methylicosa-2,6-dienimidic acid

(2e,6e)-n-(2-hydroxyethyl)-2-methylicosa-2,6-dienimidic acid

C23H43NO2 (365.3293618)


   

6'-ethyl-2,2,9'-trimethyl-3-(methylamino)spiro[cyclopentane-1,14'-tetracyclo[8.5.0.0²,⁴.0⁴,⁹]pentadecane]-1'(15'),10',12'-trien-7'-one

6'-ethyl-2,2,9'-trimethyl-3-(methylamino)spiro[cyclopentane-1,14'-tetracyclo[8.5.0.0²,⁴.0⁴,⁹]pentadecane]-1'(15'),10',12'-trien-7'-one

C25H35NO (365.27185000000003)


   

(1r,2's,3s,4's,6's,9'r)-6'-ethyl-2,2,9'-trimethyl-3-(methylamino)spiro[cyclopentane-1,14'-tetracyclo[8.5.0.0²,⁴.0⁴,⁹]pentadecane]-1'(15'),10',12'-trien-7'-one

(1r,2's,3s,4's,6's,9'r)-6'-ethyl-2,2,9'-trimethyl-3-(methylamino)spiro[cyclopentane-1,14'-tetracyclo[8.5.0.0²,⁴.0⁴,⁹]pentadecane]-1'(15'),10',12'-trien-7'-one

C25H35NO (365.27185000000003)


   

(2's,4's,6's,9'r)-6'-ethyl-2,2,9'-trimethyl-3-(methylamino)spiro[cyclopentane-1,14'-tetracyclo[8.5.0.0²,⁴.0⁴,⁹]pentadecane]-1'(15'),10',12'-trien-7'-one

(2's,4's,6's,9'r)-6'-ethyl-2,2,9'-trimethyl-3-(methylamino)spiro[cyclopentane-1,14'-tetracyclo[8.5.0.0²,⁴.0⁴,⁹]pentadecane]-1'(15'),10',12'-trien-7'-one

C25H35NO (365.27185000000003)