Exact Mass: 359.2936472
Exact Mass Matches: 359.2936472
Found 210 metabolites which its exact mass value is equals to given mass value 359.2936472
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
napelline
LSM-1634 is a kaurane diterpenoid. Napelline is a natural product found in Aconitum karakolicum, Aconitum baicalense, and other organisms with data available. 12-Epinapelline is a kaurane diterpenoid. 12-Epinapelline is a natural product found in Aconitum napellus, Delphinium leroyi, and other organisms with data available. Annotation level-1 12-Epinapelline is a diterpene alkaloid isolated from Aconitum baikalense. 12-Epinapelline exhibits Anti-inflammatory activity and stimulates the growth of colonies from fibroblast precursors[1][2]. 12-Epinapelline is a diterpene alkaloid isolated from Aconitum baikalense. 12-Epinapelline exhibits Anti-inflammatory activity and stimulates the growth of colonies from fibroblast precursors[1][2].
5-Decanoyl-2-nonylpyridine
5-Decanoyl-2-nonylpyridine is found in herbs and spices. 5-Decanoyl-2-nonylpyridine is an alkaloid from Houttuynia cordata (Yu Xing Cao Alkaloid from Houttuynia cordata (Yu Xing Cao). 5-Decanoyl-2-nonylpyridine is found in herbs and spices.
2-Hydroxylauroylcarnitine
C19H37NO5 (359.26715920000004)
2-Hydroxylauroylcarnitine is an acylcarnitine. More specifically, it is an 2-hydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Hydroxylauroylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-hydroxylauroylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews]. A human metabolite taken as a putative food compound of mammalian origin [HMDB]
3-hydroxydodecanoyl carnitine
C19H37NO5 (359.26715920000004)
3-Hydroxydodecanoyl carnitine is an acylcarnitine. More specifically, it is an 3-hydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxydodecanoyl carnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-hydroxydodecanoyl carnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
12-Hydroxydodecanoylcarnitine
C19H37NO5 (359.26715920000004)
12-hydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 12-hydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 12-hydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 12-hydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
7-Hydroxydodecanoylcarnitine
C19H37NO5 (359.26715920000004)
7-Hydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 7-Hydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-Hydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 7-Hydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
10-Hydroxydodecanoylcarnitine
C19H37NO5 (359.26715920000004)
10-Hydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 10-Hydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 10-Hydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 10-Hydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
6-Hydroxydodecanoylcarnitine
C19H37NO5 (359.26715920000004)
6-Hydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 6-Hydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 6-Hydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 6-Hydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
11-Hydroxydodecanoylcarnitine
C19H37NO5 (359.26715920000004)
11-Hydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 11-Hydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 11-Hydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 11-Hydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
5-Hydroxydodecanoylcarnitine
C19H37NO5 (359.26715920000004)
5-Hydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 5-Hydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Hydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 5-Hydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
8-Hydroxydodecanoylcarnitine
C19H37NO5 (359.26715920000004)
8-Hydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 8-Hydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 8-Hydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 8-Hydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
4-Hydroxydodecanoylcarnitine
C19H37NO5 (359.26715920000004)
4-Hydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 4-Hydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-Hydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 4-Hydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
9-Hydroxydodecanoylcarnitine
C19H37NO5 (359.26715920000004)
9-Hydroxydodecanoylcarnitine is an acylcarnitine. More specifically, it is an 9-Hydroxydodecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 9-Hydroxydodecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 9-Hydroxydodecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
N-Palmitoyl Cysteine
C19H37NO3S (359.2494012000001)
N-palmitoyl cysteine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Palmitic acid amide of Cysteine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Palmitoyl Cysteine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Palmitoyl Cysteine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
N-Myristoyl Methionine
C19H37NO3S (359.2494012000001)
N-myristoyl methionine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Myristic acid amide of Methionine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Myristoyl Methionine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Myristoyl Methionine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
N-Eicosapentaenoyl Glycine
N-eicosapentaenoyl glycine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Eicosapentaenoic acid amide of Glycine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Eicosapentaenoyl Glycine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Eicosapentaenoyl Glycine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
Eptastigmine
C21H33N3O2 (359.25726380000003)
7alpha-Hydroxyparavallarine
A natural product found in Kibatalia laurifolia.
3beta-(dimethylamino)-pregn-5-en-16-one-20-ol|terminamine I
Luciculine
Origin: Plant; Formula(Parent): C22H33NO3; Bottle Name:Napelline; PRIME Parent Name:Napelline; PRIME in-house No.:V0349; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid
CAR 12:0;O
C19H37NO5 (359.26715920000004)
(S,S)-3-CBZ-3,6-DIAZABICYCLO[3.2.0]HEPTANE
C21H33N3O2 (359.25726380000003)
Cyclomethycaine
C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
2a,3a-Epoxy-16b-(1-pyrrolidinyl)-5a-androstan-17b-ol
2,4-Diamino-6-[2-(2-Undecyl-1-Imidazolyl)Ethyl]-1,3,5-Triazine
Ursocholanate
C24H39O2- (359.29498939999996)
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
(9Z,12Z,15Z,18Z)-tetracosatetraenoate
C24H39O2- (359.29498939999996)
A polyunsaturated fatty acid anion that is the conjugate base of (9Z,12Z,15Z,18Z)-tetracosatetraenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
Cholanate
C24H39O2- (359.29498939999996)
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
(1R,2R,4S,5S,7R,8R,9R,10S,13R,16S,17R)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol
(1R,2R,4S,5S,7R,8R,9R,10R,13R,16S,17R)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol
(1R,2S,4S,5S,7R,8R,9R,10R,13R,16S,17S)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol
(1R,4S,5S,7R,8R,9R,10R,13R,16S,17S)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol
3-hydroxydodecanoylcarnitine
C19H37NO5 (359.26715920000004)
An O-acylcarnitine having 3-hydroxydodecanoyl as the acyl substituent.
Tetracosatetraenoate
A polyunsaturated fatty acid anion that is the conjugate base of tetracosatetraenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
CarE(12:0)
C19H37NO5 (359.26715920000004)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol
(1r,2s,5r,8r,9r,10s,11r,13r,14s,15r,16r)-7-ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecane-2,11,14-triol
(3r,5s)-3-[(1r,2r,4as,8as)-2,3,6-trimethyl-1,2,4a,5,8,8a-hexahydronaphthalene-1-carbonyl]-5-(2-methylpropyl)-4,5-dihydropyrrole-2,3-diol
(1r,7r,10r,18s,22r,23s)-15-hydroxy-11-methyl-5-oxa-13-azahexacyclo[11.9.1.0¹,⁷.0⁷,¹⁵.0¹⁰,²³.0¹⁸,²²]tricosan-4-one
7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl carbamoylformate
(1r,5r,6r,7r,8s,9r,13r,16s,17s)-11-ethyl-7,16-dihydroxy-6,13-dimethyl-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-4-one
(1s,5r,8r,10r,11s,14s,16r,17r)-7-(2-hydroxyethyl)-5-methyl-13-methylidene-9-oxa-7-azahexacyclo[8.6.2.2¹¹,¹⁴.0¹,⁸.0⁵,¹⁷.0¹¹,¹⁶]icosan-12-ol
(1s,2s,4s,5r,7r,8r,9s,10s,13s,16r,17s)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol
(1s,2s,4s,6r,7s,10r,11r)-6-hydroxy-13-(2-hydroxyethyl)-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-8-one
2-{6,8-dihydroxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-13-yl}acetaldehyde
(1r,5r,8r,10s,11r,14s,16r,17r,18s)-7-(2-hydroxyethyl)-5-methyl-13-methylidene-9-oxa-7-azahexacyclo[8.6.2.2¹¹,¹⁴.0¹,⁸.0⁵,¹⁷.0¹¹,¹⁶]icosan-18-ol
11-ethyl-4,16-dihydroxy-6,13-dimethyl-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-7-one
methyl 3-[(1s,2r,3s,7r,10s,13s,14r)-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹²]hexadecan-2-yl]propanoate
(1s,2s,4r,7s,8r,10r,11r)-8-hydroxy-13-(2-hydroxyethyl)-11-methyl-19-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-6-one
8-deoxy-14-dehydro-aconosine
{"Ingredient_id": "HBIN013704","Ingredient_name": "8-deoxy-14-dehydro-aconosine","Alias": "NA","Ingredient_formula": "C22H33NO3","Ingredient_Smile": "CCN1CC2CCC(C34C2CC(C31)C5CC(C6CC4C5C6=O)OC)OC","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT14994","TCMID_id": "5165","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
ajaconine
{"Ingredient_id": "HBIN014950","Ingredient_name": "ajaconine","Alias": "NA","Ingredient_formula": "C22H33NO3","Ingredient_Smile": "CC12CCCC34C1CC(C56C3CC(CC5)C(=C)C6O)OC4N(C2)CCO","Ingredient_weight": "359.5 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "782","TCMSP_id": "NA","TCM_ID_id": "7099;19458;21460","PubChem_id": "133562510","DrugBank_id": "NA"}
alkaloid c
{"Ingredient_id": "HBIN015169","Ingredient_name": "alkaloid c","Alias": "NA","Ingredient_formula": "C24H41NO","Ingredient_Smile": "CC(C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)OC)C)C)N(C)C","Ingredient_weight": "359.6 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "904","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "44358210","DrugBank_id": "NA"}
7''-ethyl-6-methyl-4'',7''-dihydro-3''h-dispiro[oxane-2,6'-[7,9,12]triazatricyclo[6.3.1.0⁴,¹²]dodecane-10',2''-oxepin]-7'-ene
C21H33N3O2 (359.25726380000003)
(1s,5r,8s,9s,11r,13r,14s,15s,17r,18s)-7-(2-hydroxyethyl)-5-methyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-13,15-diol
(1r,2s,4s,6r,7r,8r,10s,11r,12r)-12-ethoxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadec-13-ene-6,8-diol
12-ethyl-14-methyl-6-methylidene-12-azahexacyclo[8.7.1.1⁵,⁸.0¹,¹¹.0²,⁸.0¹⁴,¹⁸]nonadecane-4,7,17-triol
[(1s)-1-[(1s,3as,3bs,7r,9ar,9bs,11as)-7-methoxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethyl]dimethylamine
(1s,2r,4s,5r,7r,8r,10s,11r,14r,17s,18r)-12-ethyl-14-methyl-6-methylidene-12-azahexacyclo[8.7.1.1⁵,⁸.0¹,¹¹.0²,⁸.0¹⁴,¹⁸]nonadecane-4,7,17-triol
(1s,2s,4s,6s,7r,8r,10r,11r)-13-[(1e)-2-hydroxyethenyl]-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecane-6,8-diol
5-[(1s)-2,2-dimethyl-6-methylidenecyclohexyl]-n-{[(1-hydroxy-3-methylbut-2-en-1-ylidene)amino]methanimidoyl}-3-methylpent-2-enimidic acid
C21H33N3O2 (359.25726380000003)
7-methoxy-n-(2-phenylethyl)tetradec-4-enimidic acid
5,8-dihydroxy-n-(1-hydroxy-3-methylpentan-2-yl)-4-methoxy-4,6-dimethyldec-2-enimidic acid
C19H37NO5 (359.26715920000004)
(1r,2s,5r,9r,10s,11r,13r,14s,15r,16r)-7-ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecane-2,11,14-triol
2-[(1s,2s,4s,6s,7r,8r,10r,11r)-6,8-dihydroxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-13-yl]acetaldehyde
(1r,2s,4s,6r,7s,10s,11r)-6-hydroxy-13-(2-hydroxyethyl)-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-12-one
(1r,2s,5r,8s,9r,10s,11r,13r,14s,15s,16r)-7-ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.2¹⁰,¹³.0¹,⁸.0⁵,¹⁶.0¹⁰,¹⁵]nonadecane-2,11,14-triol
(1s,2r,4r,7r,8s,9r,13s,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol
(2s,3as,3bs,6s,6ar,7s,9ar,11ar)-7,8,11-trimethyl-6-(2-methylpropyl)-1h,2h,3h,6h,6ah,7h,9ah,11ah-indeno[5,4-d]isoindole-2,3a,4-triol
7-(2-hydroxyethyl)-5-methyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-13,15-diol
(1s,2s,5s,6r,7s,10s,12r,16s)-7,8,12-trimethyl-5-(2-methylpropyl)-13-oxa-4-azapentacyclo[12.2.1.0²,⁶.0²,¹⁰.0¹²,¹⁶]heptadeca-3,8-diene-1,3-diol
(2e)-5-[(1s)-2,2-dimethyl-6-methylidenecyclohexyl]-n-{[(1-hydroxy-3-methylbut-2-en-1-ylidene)amino]methanimidoyl}-3-methylpent-2-enimidic acid
C21H33N3O2 (359.25726380000003)
(1s,2s,4r,7r,10r,11r,18s)-18-hydroxy-13-(2-hydroxyethyl)-11-methyl-19-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-6-one
1,11-dihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,7h,10h,11h,12h-cyclonona[d]isoindol-13-one
methyl 3-[(1s,2r,3r,7r,10s,11r,13s,14s)-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹¹]hexadecan-2-yl]propanoate
methyl 3-{14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹¹]hexadecan-2-yl}propanoate
3-[(1s,4r,5r,8r,9r,12s,13s,14s,18s)-8-hydroxy-5,9-dimethyl-11-azahexacyclo[9.6.1.0¹,¹⁴.0⁴,¹⁸.0⁵,¹³.0⁸,¹²]octadecan-13-yl]propanoic acid
(1r,2s,4r,5r,6s,8r,9r,10r,13r,16s,17r)-11-ethyl-4,16-dihydroxy-6,13-dimethyl-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecan-7-one
methyl 3-{14-isopropyl-1-methyl-12-azatetracyclo[8.6.0.0²,¹³.0³,⁷]hexadec-3-en-2-yl}propanoate
n,n'-bis[(2z)-3,7-dimethylocta-2,6-dien-1-yl]-n,n'-dimethylguanidine
(1-{7-methoxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}ethyl)dimethylamine
{1-[(1r,3as,3bs,9ar,9br,11as)-7-methoxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethyl}dimethylamine
5-[(12z)-nonadec-12-en-1-yl]-1h-pyrrole-2-carbaldehyde
(1s,3e,5s,10r)-15-ethyl-1,5-dihydroxy-3,17,17-trimethyl-7-methylidene-15-azatricyclo[8.5.2.0¹³,¹⁶]heptadeca-3,13(16)-dien-14-one
(1s,5r,8r,9s,11r,13r,14s,15s,17r,18s)-7-(2-hydroxyethyl)-5-methyl-12-methylidene-7-azahexacyclo[9.6.2.0¹,⁸.0⁵,¹⁷.0⁹,¹⁴.0¹⁴,¹⁸]nonadecane-13,15-diol
methyl 3-[(1s,2r,3s,7r,10s,13s,14s)-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹²]hexadecan-2-yl]propanoate
(1r,4s,5s,7r,8r,9r,10r,13r,16s)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol
(1'r,2s,4's,6s,7''r,10'r)-7''-ethyl-6-methyl-4'',7''-dihydro-3''h-dispiro[oxane-2,6'-[7,9,12]triazatricyclo[6.3.1.0⁴,¹²]dodecane-10',2''-oxepin]-7'-ene
C21H33N3O2 (359.25726380000003)
n-{[(2s,5e,6r,8r,9s,11s,12s)-8-(4-hydroxybutyl)-12-(prop-2-en-1-yl)-1,7-diazatetracyclo[7.3.1.0²,⁷.0⁶,¹¹]tridecan-5-ylidene]methyl}ethanimidic acid
C21H33N3O2 (359.25726380000003)
7,8,12-trimethyl-5-(2-methylpropyl)-13-oxa-4-azapentacyclo[12.2.1.0²,⁶.0²,¹⁰.0¹²,¹⁶]heptadeca-3,8-diene-1,3-diol
n,n'-bis[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-n,n'-dimethylguanidine
n-{[(5e)-8-(4-hydroxybutyl)-12-(prop-2-en-1-yl)-1,7-diazatetracyclo[7.3.1.0²,⁷.0⁶,¹¹]tridecan-5-ylidene]methyl}ethanimidic acid
C21H33N3O2 (359.25726380000003)
methyl 3-[(1r,2s,3s,7s,10r,11s,13r,14s)-14-isopropyl-1-methyl-12-azapentacyclo[8.6.0.0²,¹³.0³,⁷.0⁷,¹¹]hexadecan-2-yl]propanoate
[(1s)-1-[(1s,3as,3bs,7s,9ar,9bs,11ar)-7-methoxy-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethyl]dimethylamine
7,8,11-trimethyl-6-(2-methylpropyl)-1h,2h,3h,6h,6ah,7h,9ah,11ah-indeno[5,4-d]isoindole-2,3a,4-triol
(1r,2s,4r,5r,7r,8r,9r,10r,13r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol
(4e,7s)-7-methoxy-n-(2-phenylethyl)tetradec-4-enimidic acid
(3s,3ar,4s,6as,11s,13ar)-1,11-dihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,7h,10h,11h,12h-cyclonona[d]isoindol-13-one
(2r,4ar,7s,8as,10as)-7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl carbamoylformate
(3s,5s)-3-[(1s,2s,4ar,8ar)-2,3,6-trimethyl-1,2,4a,5,8,8a-hexahydronaphthalene-1-carbonyl]-5-(2-methylpropyl)-4,5-dihydropyrrole-2,3-diol
(1r,2r,4s,5r,7r,8r,9r,10r,13r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol
(1s,5r,8r,10r,11s,12r,14s,16r,17r)-7-(2-hydroxyethyl)-5-methyl-13-methylidene-9-oxa-7-azahexacyclo[8.6.2.2¹¹,¹⁴.0¹,⁸.0⁵,¹⁷.0¹¹,¹⁶]icosan-12-ol
(2e,4r,5s,6s,8r)-5,8-dihydroxy-n-[(2s,3s)-1-hydroxy-3-methylpentan-2-yl]-4-methoxy-4,6-dimethyldec-2-enimidic acid
C19H37NO5 (359.26715920000004)
8-hydroxy-13-(2-hydroxyethyl)-11-methyl-19-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-6-one
(2r,4r,5r,7r,8r,13r,16s,17r)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.1⁵,⁸.0¹,¹⁰.0²,⁸.0¹³,¹⁷]nonadecane-4,7,16-triol
(3s,3ar,4s,6as,11r,13ar)-1,11-dihydroxy-4,5,8-trimethyl-3-(2-methylpropyl)-3h,3ah,4h,6ah,7h,10h,11h,12h-cyclonona[d]isoindol-13-one
(3s,5s)-3-[(1s,2r,4as,8ar)-2,3,6-trimethyl-1,2,4a,5,8,8a-hexahydronaphthalene-1-carbonyl]-5-(2-methylpropyl)-4,5-dihydropyrrole-2,3-diol
(2s,3as,3bs,6s,6ar,7s,9as,11ar)-7,8-dimethyl-11-methylidene-6-(2-methylpropyl)-1h,2h,3h,6h,6ah,7h,9ah,10h,11ah-indeno[5,4-d]isoindole-2,3a,4-triol
(3s,5s)-3-[(1r,2r,4as,8as)-2,3,6-trimethyl-1,2,4a,5,8,8a-hexahydronaphthalene-1-carbonyl]-5-(2-methylpropyl)-4,5-dihydropyrrole-2,3-diol
15-ethyl-1,5-dihydroxy-3,17,17-trimethyl-7-methylidene-15-azatricyclo[8.5.2.0¹³,¹⁶]heptadeca-3,13(16)-dien-14-one
2-[(1s,2r,4s,6s,7r,8r,10s,11r)-6,8-dihydroxy-11-methyl-5-methylidene-13-azapentacyclo[9.3.3.2⁴,⁷.0¹,¹⁰.0²,⁷]nonadecan-13-yl]acetaldehyde
3-[(1r,2r,7s,10r,11r,13r,15s,17r)-17-isopropyl-11-methyl-14-oxa-16-azapentacyclo[11.3.1.0²,¹¹.0³,⁷.0¹⁰,¹⁵]heptadec-3-en-2-yl]propanoic acid
(1's,2r,4'r,6r,7''s,10's)-7''-ethyl-6-methyl-4'',7''-dihydro-3''h-dispiro[oxane-2,6'-[7,9,12]triazatricyclo[6.3.1.0⁴,¹²]dodecane-10',2''-oxepin]-7'-ene
C21H33N3O2 (359.25726380000003)