Exact Mass: 327.194667

Exact Mass Matches: 327.194667

Found 38 metabolites which its exact mass value is equals to given mass value 327.194667, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

   

(4E,6Z)-3-Hydroxydeca-4,6-dienoylcarnitine

3-[(3-hydroxydeca-4,6-dienoyl)oxy]-4-(trimethylazaniumyl)butanoate

C17H29NO5 (327.2045624)


(4E,6Z)-3-Hydroxydeca-4,6-dienoylcarnitine is an acylcarnitine. More specifically, it is an (4E,6Z)-3-hydroxydeca-4,6-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4E,6Z)-3-Hydroxydeca-4,6-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (4E,6Z)-3-Hydroxydeca-4,6-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(6Z,8E)-3-Hydroxydeca-6,8-dienoylcarnitine

3-[(3-hydroxydeca-6,8-dienoyl)oxy]-4-(trimethylazaniumyl)butanoate

C17H29NO5 (327.2045624)


(6Z,8E)-3-Hydroxydeca-6,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an (6Z,8E)-3-hydroxydeca-6,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (6Z,8E)-3-Hydroxydeca-6,8-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (6Z,8E)-3-Hydroxydeca-6,8-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4E,7E)-3-Hydroxydeca-4,7-dienoylcarnitine

3-[(3-hydroxydeca-4,7-dienoyl)oxy]-4-(trimethylazaniumyl)butanoate

C17H29NO5 (327.2045624)


(4E,7E)-3-Hydroxydeca-4,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an (4E,7E)-3-hydroxydeca-4,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4E,7E)-3-Hydroxydeca-4,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (4E,7E)-3-Hydroxydeca-4,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(5Z,7E)-3-Hydroxydeca-5,7-dienoylcarnitine

3-[(3-hydroxydeca-5,7-dienoyl)oxy]-4-(trimethylazaniumyl)butanoate

C17H29NO5 (327.2045624)


(5Z,7E)-3-Hydroxydeca-5,7-dienoylcarnitine is an acylcarnitine. More specifically, it is an (5Z,7E)-3-hydroxydeca-5,7-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5Z,7E)-3-Hydroxydeca-5,7-dienoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (5Z,7E)-3-Hydroxydeca-5,7-dienoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   
   
   
   

3-acetylviridiflorine

3-acetylviridiflorine

C17H29NO5 (327.2045624)


   
   

(5-Isopropyl-3-methyl-1,2-oxazol-4-yl)[4-(3-methylphenyl)-1-piper azinyl]methanone

(5-Isopropyl-3-methyl-1,2-oxazol-4-yl)[4-(3-methylphenyl)-1-piper azinyl]methanone

C19H25N3O2 (327.194667)


   

1-HEXYL-4-(4-ISOTHIOCYANATOPHENYL)-BICYC LO(2.2.2)OCTANE

1-HEXYL-4-(4-ISOTHIOCYANATOPHENYL)-BICYC LO(2.2.2)OCTANE

C21H29NS (327.20205940000005)


   
   

Methanone, [4-(2,3-dimethylphenyl)-1-piperazinyl](3-ethyl-5-methyl-4-isoxazolyl)

Methanone, [4-(2,3-dimethylphenyl)-1-piperazinyl](3-ethyl-5-methyl-4-isoxazolyl)

C19H25N3O2 (327.194667)


   

1,3,5-tris(azidomethyl)-2,4,6-triethylbenzene

1,3,5-tris(azidomethyl)-2,4,6-triethylbenzene

C15H21N9 (327.1919826)


   

1-benzyl-4,4-diphenylpiperidine

1-benzyl-4,4-diphenylpiperidine

C24H25N (327.198689)


   

tert-butyl 3-(4-phenyl-1H-imidazol-2-yl)piperidine-1-carboxylate

tert-butyl 3-(4-phenyl-1H-imidazol-2-yl)piperidine-1-carboxylate

C19H25N3O2 (327.194667)


   
   
   

3,5-diethyl-2-(2-hydroxyethylamino)-5-methyl-6H-benzo[h]quinazolin-4-one

3,5-diethyl-2-(2-hydroxyethylamino)-5-methyl-6H-benzo[h]quinazolin-4-one

C19H25N3O2 (327.194667)


   

beta-Aminoarteether

beta-Aminoarteether

C17H29NO5 (327.2045624)


   

(4E,6Z)-3-Hydroxydeca-4,6-dienoylcarnitine

(4E,6Z)-3-Hydroxydeca-4,6-dienoylcarnitine

C17H29NO5 (327.2045624)


   

(6Z,8E)-3-Hydroxydeca-6,8-dienoylcarnitine

(6Z,8E)-3-Hydroxydeca-6,8-dienoylcarnitine

C17H29NO5 (327.2045624)


   

(4E,7E)-3-Hydroxydeca-4,7-dienoylcarnitine

(4E,7E)-3-Hydroxydeca-4,7-dienoylcarnitine

C17H29NO5 (327.2045624)


   

(5Z,7E)-3-Hydroxydeca-5,7-dienoylcarnitine

(5Z,7E)-3-Hydroxydeca-5,7-dienoylcarnitine

C17H29NO5 (327.2045624)


   

1,1-Diethyl-2,2-cyanine

1,1-Diethyl-2,2-cyanine

C23H23N2+ (327.1861138)


   

Glyoxal-lysine dimer

Glyoxal-lysine dimer

C15H27N4O4+ (327.20322020000003)


An imidazolium ion formed via cyclo-dimerisation of L-lysine and glyoxal.

   

1-[(2,4-Dimethoxy-3-methylphenyl)methyl]-4-(2-pyridinyl)piperazine

1-[(2,4-Dimethoxy-3-methylphenyl)methyl]-4-(2-pyridinyl)piperazine

C19H25N3O2 (327.194667)


   

(2R,3R,4R)-4-(hydroxymethyl)-1-[1-oxo-3-(1-piperidinyl)propyl]-3-phenyl-2-azetidinecarbonitrile

(2R,3R,4R)-4-(hydroxymethyl)-1-[1-oxo-3-(1-piperidinyl)propyl]-3-phenyl-2-azetidinecarbonitrile

C19H25N3O2 (327.194667)


   

(2R,3S,4R)-4-(hydroxymethyl)-1-[1-oxo-3-(1-piperidinyl)propyl]-3-phenyl-2-azetidinecarbonitrile

(2R,3S,4R)-4-(hydroxymethyl)-1-[1-oxo-3-(1-piperidinyl)propyl]-3-phenyl-2-azetidinecarbonitrile

C19H25N3O2 (327.194667)


   

(2S,3S,4R)-4-(hydroxymethyl)-1-[1-oxo-3-(1-piperidinyl)propyl]-3-phenyl-2-azetidinecarbonitrile

(2S,3S,4R)-4-(hydroxymethyl)-1-[1-oxo-3-(1-piperidinyl)propyl]-3-phenyl-2-azetidinecarbonitrile

C19H25N3O2 (327.194667)


   

(2S,3S,4S)-4-(hydroxymethyl)-1-[1-oxo-3-(1-piperidinyl)propyl]-3-phenyl-2-azetidinecarbonitrile

(2S,3S,4S)-4-(hydroxymethyl)-1-[1-oxo-3-(1-piperidinyl)propyl]-3-phenyl-2-azetidinecarbonitrile

C19H25N3O2 (327.194667)


   

4-(1r,7as)-hexahydro-1h-pyrrolizin-1-ylmethyl 1-methyl (2r)-2-hydroxy-2-(2-methylpropyl)butanedioate

4-(1r,7as)-hexahydro-1h-pyrrolizin-1-ylmethyl 1-methyl (2r)-2-hydroxy-2-(2-methylpropyl)butanedioate

C17H29NO5 (327.2045624)


   

4-(pent-4-enoyl)-4,7,15-triazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadeca-10,12-dien-14-one

4-(pent-4-enoyl)-4,7,15-triazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadeca-10,12-dien-14-one

C19H25N3O2 (327.194667)


   

4-hexahydro-1h-pyrrolizin-1-ylmethyl 1-methyl 2-hydroxy-2-(2-methylpropyl)butanedioate

4-hexahydro-1h-pyrrolizin-1-ylmethyl 1-methyl 2-hydroxy-2-(2-methylpropyl)butanedioate

C17H29NO5 (327.2045624)


   

(1r,7as)-hexahydro-1h-pyrrolizin-1-ylmethyl (2s)-2-[(1r)-1-(acetyloxy)ethyl]-2-hydroxy-3-methylbutanoate

(1r,7as)-hexahydro-1h-pyrrolizin-1-ylmethyl (2s)-2-[(1r)-1-(acetyloxy)ethyl]-2-hydroxy-3-methylbutanoate

C17H29NO5 (327.2045624)


   

(1s,2r,9s)-4-(pent-4-enoyl)-4,7,15-triazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadeca-10,12-dien-14-one

(1s,2r,9s)-4-(pent-4-enoyl)-4,7,15-triazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadeca-10,12-dien-14-one

C19H25N3O2 (327.194667)


   

hexahydro-1h-pyrrolizin-1-ylmethyl 3-(acetyloxy)-2-hydroxy-2-isopropylbutanoate

hexahydro-1h-pyrrolizin-1-ylmethyl 3-(acetyloxy)-2-hydroxy-2-isopropylbutanoate

C17H29NO5 (327.2045624)