Exact Mass: 313.26168000000007

Exact Mass Matches: 313.26168000000007

Found 39 metabolites which its exact mass value is equals to given mass value 313.26168000000007, within given mass tolerance error 8.0E-6 dalton. Try search metabolite list with more accurate mass tolerance error 1.6E-6 dalton.

   

N-Palmitoylglycine

2-(Hexadecanoylamino)acetic acid

C18H35NO3 (313.26168000000007)


Palmitoylglycine is an acylglycine with C-16 fatty acid group as the acyl moiety. Acylglycines 1 possess a common amidoacetic acid moiety and are normally minor metabolites of fatty acids. Elevated levels of certain acylglycines appear in the urine and blood of patients with various fatty acid oxidation disorders. They are normally produced through the action of glycine N-acyltransferase which is an enzyme that catalyzes the chemical reaction: acyl-CoA + glycine ↔ CoA + N-acylglycine. Palmitoylglycine is an acylglycine with C-16 fatty acid group as the acyl moiety. Palmitoylglycine (N-palmitoyl glycine), an endogenous lipid that acts as a modulator of calcium influx and nitric oxide (NO) production in sensory neurons[1].

   

N-Lauroyl Isoleucine

2-dodecanamido-3-methylpentanoic acid

C18H35NO3 (313.26168000000007)


N-lauroyl isoleucine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Lauric acid amide of Isoleucine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Lauroyl Isoleucine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Lauroyl Isoleucine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Lauroyl Leucine

N-Lauroyl Leucine

C18H35NO3 (313.26168000000007)


N-lauroyl leucine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Lauric acid amide of Leucine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Lauroyl Leucine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Lauroyl Leucine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

2-amino-1,3,4-trihydroxy-octadecane-6,8-diene

2-amino-1,3,4-trihydroxy-octadecane-6,8-diene

C18H35NO3 (313.26168000000007)


   

(2S,3R)-2-acetamido-3-acetoxy-tetradecane|diacetyl xestoaminol C|N,O-diacetyl xestoaminol C

(2S,3R)-2-acetamido-3-acetoxy-tetradecane|diacetyl xestoaminol C|N,O-diacetyl xestoaminol C

C18H35NO3 (313.26168000000007)


   

3-hydroxy-2-hydroxymethyl-6-(8-oxododecyl)piperidine

3-hydroxy-2-hydroxymethyl-6-(8-oxododecyl)piperidine

C18H35NO3 (313.26168000000007)


   
   

3-hydro xy-2-hydroxymethyl-6-(7-oxododecyl)piperidine

3-hydro xy-2-hydroxymethyl-6-(7-oxododecyl)piperidine

C18H35NO3 (313.26168000000007)


   

Dehydrophytosphingosine (not validated) - 2H

Dehydrophytosphingosine (not validated) - 2H

C18H35NO3 (313.26168000000007)


Annotation level-3

   

N-Palmitoylglycine

N-(1-oxohexadecyl)-glycine

C18H35NO3 (313.26168000000007)


Palmitoylglycine (N-palmitoyl glycine), an endogenous lipid that acts as a modulator of calcium influx and nitric oxide (NO) production in sensory neurons[1].

   

EMA-1

N-hexadecanoyl-glycine

C18H35NO3 (313.26168000000007)


   
   
   
   

Dehydrophytosphingosine (not validated)-2H

Dehydrophytosphingosine (not validated)-2H

C18H35NO3 (313.26168000000007)


   

N-[(E)-1,3-dihydroxyhexadec-4-en-2-yl]acetamide

N-[(E)-1,3-dihydroxyhexadec-4-en-2-yl]acetamide

C18H35NO3 (313.26168000000007)


   

N-[(E)-1,3-dihydroxynon-4-en-2-yl]nonanamide

N-[(E)-1,3-dihydroxynon-4-en-2-yl]nonanamide

C18H35NO3 (313.26168000000007)


   

N-[(E)-1,3-dihydroxytridec-4-en-2-yl]pentanamide

N-[(E)-1,3-dihydroxytridec-4-en-2-yl]pentanamide

C18H35NO3 (313.26168000000007)


   

(2S,3R,4E)-2-Butyrylamino-4-tetradecene-1,3-diol

(2S,3R,4E)-2-Butyrylamino-4-tetradecene-1,3-diol

C18H35NO3 (313.26168000000007)


   

N-[(E)-1,3-dihydroxyundec-4-en-2-yl]heptanamide

N-[(E)-1,3-dihydroxyundec-4-en-2-yl]heptanamide

C18H35NO3 (313.26168000000007)


   

N-[(E)-1,3-dihydroxypentadec-4-en-2-yl]propanamide

N-[(E)-1,3-dihydroxypentadec-4-en-2-yl]propanamide

C18H35NO3 (313.26168000000007)


   

N-[(E)-1,3-dihydroxydec-4-en-2-yl]octanamide

N-[(E)-1,3-dihydroxydec-4-en-2-yl]octanamide

C18H35NO3 (313.26168000000007)


   

N-[(E)-1,3-dihydroxydodec-4-en-2-yl]hexanamide

N-[(E)-1,3-dihydroxydodec-4-en-2-yl]hexanamide

C18H35NO3 (313.26168000000007)


   

N-[(E)-1,3-dihydroxyoct-4-en-2-yl]decanamide

N-[(E)-1,3-dihydroxyoct-4-en-2-yl]decanamide

C18H35NO3 (313.26168000000007)


   

N-hexadecanoylglycine

N-hexadecanoylglycine

C18H35NO3 (313.26168000000007)


An N-acylglycine in which the acyl group is specified as hexadecanoyl (palmitoyl).

   

12-(5-hydroxy-6-methylpiperidin-2-yl)dodecanoic acid

12-(5-hydroxy-6-methylpiperidin-2-yl)dodecanoic acid

C18H35NO3 (313.26168000000007)


   

12-[5-hydroxy-6-(hydroxymethyl)piperidin-2-yl]dodecan-2-one

12-[5-hydroxy-6-(hydroxymethyl)piperidin-2-yl]dodecan-2-one

C18H35NO3 (313.26168000000007)


   

n-[3-(acetyloxy)tetradecan-2-yl]ethanimidic acid

n-[3-(acetyloxy)tetradecan-2-yl]ethanimidic acid

C18H35NO3 (313.26168000000007)


   

n-[(2s,3r)-3-(acetyloxy)tetradecan-2-yl]ethanimidic acid

n-[(2s,3r)-3-(acetyloxy)tetradecan-2-yl]ethanimidic acid

C18H35NO3 (313.26168000000007)


   

12-[(2s,5r,6s)-5-hydroxy-6-methylpiperidin-2-yl]dodecanoic acid

12-[(2s,5r,6s)-5-hydroxy-6-methylpiperidin-2-yl]dodecanoic acid

C18H35NO3 (313.26168000000007)


   

12-[(2r,5s,6s)-5-hydroxy-6-methylpiperidin-2-yl]dodecanoic acid

12-[(2r,5s,6s)-5-hydroxy-6-methylpiperidin-2-yl]dodecanoic acid

C18H35NO3 (313.26168000000007)