Exact Mass: 303.2118

Exact Mass Matches: 303.2118

Found 53 metabolites which its exact mass value is equals to given mass value 303.2118, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Samandarone

2,5-Epoxycyclopenta[5,6]naphth[1,2-d]azepin-9(1H)-one,hexadecahydro-5a,7a-dimethyl-, (2S,5R,5aS,5bS,7aR,10aS,10bS,12aR)-

C19H29NO2 (303.2198)


   

3-hydroxyoctanoyl carnitine

3-[(3-hydroxyoctanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H29NO5 (303.2046)


3-Hydroxyoctanoyl carnitine is an acylcarnitine. More specifically, it is a 3-hydroxyoctanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxyoctanoyl carnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-hydroxyoctanoyl carnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

5-Hydroxyoctanoylcarnitine

3-[(5-hydroxyoctanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H29NO5 (303.2046)


5-Hydroxyoctanoylcarnitine is an acylcarnitine. More specifically, it is an 5-hydroxyoctanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Hydroxyoctanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 5-Hydroxyoctanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

7-Hydroxyoctanoylcarnitine

3-[(7-hydroxyoctanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H29NO5 (303.2046)


7-Hydroxyoctanoylcarnitine is an acylcarnitine. More specifically, it is an 7-hydroxyoctanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-Hydroxyoctanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 7-Hydroxyoctanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

6-Hydroxyoctanoylcarnitine

3-[(6-hydroxyoctanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H29NO5 (303.2046)


6-hydroxyoctanoylcarnitine is an acylcarnitine. More specifically, it is an 6-hydroxyoctanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 6-hydroxyoctanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 6-hydroxyoctanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

4-Hydroxyoctanoylcarnitine

3-[(4-Hydroxyoctanoyl)oxy]-4-(trimethylazaniumyl)butanoic acid

C15H29NO5 (303.2046)


4-hydroxyoctanoylcarnitine is an acylcarnitine. More specifically, it is an 4-hydroxyoctanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-hydroxyoctanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 4-hydroxyoctanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

5-Hydroxy-2-propylpentanoylcarnitine

3-[(5-hydroxy-2-propylpentanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H29NO5 (303.2046)


5-Hydroxy-2-propylpentanoylcarnitine is an acylcarnitine. More specifically, it is an 5-hydroxy-2-propylpentanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Hydroxy-2-propylpentanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 5-Hydroxy-2-propylpentanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-v-2-propylpentanoylcarnitine

3-[(3-hydroxy-2-propylpentanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H29NO5 (303.2046)


3-Hydroxy-2-propylpentanoylcarnitine is an acylcarnitine. More specifically, it is an 3-hydroxy-2-propylpentanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxy-2-propylpentanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-Hydroxy-2-propylpentanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

4-Hydroxy-2-propylpentanoylcarnitine

3-[(4-hydroxy-2-propylpentanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H29NO5 (303.2046)


4-Hydroxy-2-propylpentanoylcarnitine is an acylcarnitine. More specifically, it is an 4-hydroxy-2-propylpentanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-Hydroxy-2-propylpentanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 4-Hydroxy-2-propylpentanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Bornaprolol

1-(2-exo-Bicyclo(2,2,1)hept-2-ylphenoxy)-3- ((1-methylethyl)amino)-2-propanol

C19H29NO2 (303.2198)


   

1-[(5-Methoxy-2,3-dihydro-1H-indol-3-yl)methylideneamino]-2-pentylguanidine

N-{[(5-methoxy-2,3-dihydro-1H-indol-3-yl)methylidene]amino}-N-pentylguanidine

C16H25N5O (303.2059)


   

4-Methoxy-alpha-pop

4-Methoxy-alpha-pop

C19H29NO2 (303.2198)


   

10-Phenyl-8-propyllobeliolone|8-Propyl-10-phenyl-lobeliolon

10-Phenyl-8-propyllobeliolone|8-Propyl-10-phenyl-lobeliolon

C19H29NO2 (303.2198)


   

Cycloneosamandion

Cycloneosamandion

C19H29NO2 (303.2198)


   

Oxine-3beta-3-Hydroxyandrost-5-en-17-one

Oxine-3beta-3-Hydroxyandrost-5-en-17-one

C19H29NO2 (303.2198)


   

4-hydroxy-6-[(E,E)-3,7-dimethylocta-2,5-dienyl]-3-methyl-5-propyl-1H-pyridin-2-one|iromycin A|NK26588

4-hydroxy-6-[(E,E)-3,7-dimethylocta-2,5-dienyl]-3-methyl-5-propyl-1H-pyridin-2-one|iromycin A|NK26588

C19H29NO2 (303.2198)


   

1-Pyrrolidinepropanol, a-(4-hydroxycyclohexyl)-a-phenyl-, trans-

1-Pyrrolidinepropanol, a-(4-hydroxycyclohexyl)-a-phenyl-, trans-

C19H29NO2 (303.2198)


   

1-Pyrrolidinepropanol, a-(4-hydroxycyclohexyl)-a-phenyl-, cis-

1-Pyrrolidinepropanol, a-(4-hydroxycyclohexyl)-a-phenyl-, cis-

C19H29NO2 (303.2198)


   

(-)-Samandarone

(-)-Samandarone

C19H29NO2 (303.2198)


   

Cycloneosamadione

Cycloneosamadione

C19H29NO2 (303.2198)


   

CAR 8:0;O

3S-{[-3-hydroxyoctanoyl]oxy}-4-(trimethylazaniumyl)butanoate

C15H29NO5 (303.2046)


   

TERT-BUTYL 2-((TERT-BUTOXYCARBONYL)AMINO)-6-HYDROXYHEXANOATE

TERT-BUTYL 2-((TERT-BUTOXYCARBONYL)AMINO)-6-HYDROXYHEXANOATE

C15H29NO5 (303.2046)


   

1-METHYL-4-(6-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIDIN-2-YL)PIPERAZINE

1-METHYL-4-(6-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIDIN-2-YL)PIPERAZINE

C16H26BN3O2 (303.2118)


   

N-(PIPERIDIN-1-YL)-5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIDIN-2-AMINE

N-(PIPERIDIN-1-YL)-5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIDIN-2-AMINE

C16H26BN3O2 (303.2118)


   

2-piperazin-1-yl-4,6-dipyrrolidin-1-yl-1,3,5-triazine

2-piperazin-1-yl-4,6-dipyrrolidin-1-yl-1,3,5-triazine

C15H25N7 (303.2171)


   
   

1-METHYL-4-(4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIDIN-2-YL)PIPERAZINE

1-METHYL-4-(4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIDIN-2-YL)PIPERAZINE

C16H26BN3O2 (303.2118)


   

N-CYCLOHEXYL-5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIMIDIN-2-AMINE

N-CYCLOHEXYL-5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIMIDIN-2-AMINE

C16H26BN3O2 (303.2118)


   

1-[3-(4-TERT-BUTYLBENZOYL)-PROPYL]-4-HYDROXYPIPERIDINE

1-[3-(4-TERT-BUTYLBENZOYL)-PROPYL]-4-HYDROXYPIPERIDINE

C19H29NO2 (303.2198)


   

DI-TERT-BUTYL(NEOPENTYL)PHOSPHONIUM TETRAFLUOROBORATE

DI-TERT-BUTYL(NEOPENTYL)PHOSPHONIUM TETRAFLUOROBORATE

C13H29BF4P (303.2036)


   

1H-PYRROLO[2,3-B]PYRIDIN-5-AMINE, 2-METHYL-1-[TRIS(1-METHYLETHYL)SILYL]-

1H-PYRROLO[2,3-B]PYRIDIN-5-AMINE, 2-METHYL-1-[TRIS(1-METHYLETHYL)SILYL]-

C17H29N3Si (303.2131)


   

1-methyl-4-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)piperazine

1-methyl-4-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)piperazine

C16H26BN3O2 (303.2118)


   

(3R,4S,5S)-4-(tert-butoxycarbonyl(Methyl)amino)-3-Methoxy-5-Methylheptanoic acid

(3R,4S,5S)-4-(tert-butoxycarbonyl(Methyl)amino)-3-Methoxy-5-Methylheptanoic acid

C15H29NO5 (303.2046)


   

Lithium triisopropyl 2-(5-methoxypyridyl)borate

Lithium triisopropyl 2-(5-methoxypyridyl)borate

C15H27BLiNO4 (303.2193)


   

1,7-Bis-Boc-1,4,7-triazaheptane

1,7-Bis-Boc-1,4,7-triazaheptane

C14H29N3O4 (303.2158)


   

2-(4-Methyl-piperazin-1-yl)pyridine-5-boronic acid pinacol ester

2-(4-Methyl-piperazin-1-yl)pyridine-5-boronic acid pinacol ester

C16H26BN3O2 (303.2118)


   

2,6-DI-T-BUTYL-4-(METHACRYLOYLAMINOMETHYL) PHENOL

2,6-DI-T-BUTYL-4-(METHACRYLOYLAMINOMETHYL) PHENOL

C19H29NO2 (303.2198)


   

3-hydroxyoctanoyl carnitine

3-[(3-hydroxyoctanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C15H29NO5 (303.2046)


3-Hydroxyoctanoyl carnitine is an acylcarnitine. More specifically, it is a 3-hydroxyoctanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxyoctanoyl carnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-hydroxyoctanoyl carnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

5-Hydroxyoctanoylcarnitine

5-Hydroxyoctanoylcarnitine

C15H29NO5 (303.2046)


   

7-Hydroxyoctanoylcarnitine

7-Hydroxyoctanoylcarnitine

C15H29NO5 (303.2046)


   

6-Hydroxyoctanoylcarnitine

6-Hydroxyoctanoylcarnitine

C15H29NO5 (303.2046)


   

4-Hydroxyoctanoylcarnitine

4-Hydroxyoctanoylcarnitine

C15H29NO5 (303.2046)


   

5-Hydroxy-2-propylpentanoylcarnitine

5-Hydroxy-2-propylpentanoylcarnitine

C15H29NO5 (303.2046)


   

4-Hydroxy-2-propylpentanoylcarnitine

4-Hydroxy-2-propylpentanoylcarnitine

C15H29NO5 (303.2046)


   

3-v-2-propylpentanoylcarnitine

3-v-2-propylpentanoylcarnitine

C15H29NO5 (303.2046)


   

1-[(5-Methoxy-2,3-dihydro-1H-indol-3-yl)methylideneamino]-2-pentylguanidine

1-[(5-Methoxy-2,3-dihydro-1H-indol-3-yl)methylideneamino]-2-pentylguanidine

C16H25N5O (303.2059)


   

3-Hydroxyoctanoylcarnitine

3-Hydroxyoctanoylcarnitine

C15H29NO5 (303.2046)


An O-acylcarnitine having 3-hydroxyoctanoyl as the acyl substituent.

   
   
   

1-[(2r,6r)-6-[(2s)-2-hydroxy-2-phenylethyl]-1-methylpiperidin-2-yl]pentan-2-one

1-[(2r,6r)-6-[(2s)-2-hydroxy-2-phenylethyl]-1-methylpiperidin-2-yl]pentan-2-one

C19H29NO2 (303.2198)


   

6-[(2e,5e)-3,7-dimethylocta-2,5-dien-1-yl]-3-methyl-5-propylpyridine-2,4-diol

6-[(2e,5e)-3,7-dimethylocta-2,5-dien-1-yl]-3-methyl-5-propylpyridine-2,4-diol

C19H29NO2 (303.2198)


   

1-[6-(2-hydroxy-2-phenylethyl)-1-methylpiperidin-2-yl]pentan-2-one

1-[6-(2-hydroxy-2-phenylethyl)-1-methylpiperidin-2-yl]pentan-2-one

C19H29NO2 (303.2198)


   

6-(3,7-dimethylocta-2,5-dien-1-yl)-3-methyl-5-propylpyridine-2,4-diol

6-(3,7-dimethylocta-2,5-dien-1-yl)-3-methyl-5-propylpyridine-2,4-diol

C19H29NO2 (303.2198)