Exact Mass: 178.0406
Exact Mass Matches: 178.0406
Found 315 metabolites which its exact mass value is equals to given mass value 178.0406
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Cysteinylglycine
Cysteinylglycine is a naturally occurring dipeptide. It is derived from the breakdown of glutathione (a tripeptide). In plasma, cysteinylglycine is in a reduced, oxidized and protein-bound form (aminothiol) and interact via redox and disulphide exchange reactions, in a dynamic system referred to as redox thiol status. (PMID 8642471) Spermatozoa of sub fertile men contain significantly higher thiol concentrations as compared with those of fertile men. The detrimental effect on embryo quality of a high homocysteine (Hcy, another member of the thiol group) concentration in the ejaculate and in follicular fluid is intriguing and may suggest that Hcy is inversely associated with fertility outcome. (PMID 16556671) Rheumatoid arthritis (RA) is a chronic inflammatory disease which involves the synovial membrane of multiple diarthroidal joints causing damage to cartilage and bones. The damage process seems to be related to an overproduction of oxygen reactive species inducing an oxidative perturbation with an increase in some oxidized forms (disulfides and protein mixed disulfides) and a decrease in free thiols. (PMID 15895891) Imipenem (thienamycin formamidine), is a broad-spectrum beta-lactam antibiotic, always used in combination with cilastatin in order to avoid the premature breakdown of imipenem by renal tubular dipeptidase. As this dipeptidase also hydrolyzes the glutathione metabolite cysteinylglycine, the therapeutic association of imipenem and cilastatin causes plasma levels of cysteinylglycine to increase significantly, while cysteine levels are decreased and homocysteine levels are unaffected. Therefore, antibiotic treatment using imipenem-cilastatin induces important metabolic changes that should not remain unrecognized. (PMID 15843241) [HMDB]. Cysteinylglycine is found in many foods, some of which are chinese cabbage, wax apple, garden tomato (variety), and japanese pumpkin. Cysteinylglycine is a naturally occurring dipeptide composed of cysteine and glycine. It is derived from the breakdown of glutathione (a tripeptide). In plasma, cysteinylglycine is in a reduced, oxidized, and protein-bound form (aminothiol) and interacts via redox and disulphide exchange reactions in a dynamic system referred to as redox thiol status (PMID: 8642471). Spermatozoa of sub-fertile men contain significantly higher thiol concentrations as compared with those of fertile men. The detrimental effect on embryo quality of a high homocysteine (Hcy) concentration in the ejaculate and in the follicular fluid is intriguing and may suggest that Hcy is inversely associated with fertility outcome (PMID: 16556671). Rheumatoid arthritis (RA) is a chronic inflammatory disease which involves the synovial membrane of multiple diarthroidal joints causing damage to cartilage and bones. The damage process seems to be related to an overproduction of oxygen reactive species inducing an oxidative perturbation with an increase in some oxidized forms (disulfides and protein mixed disulfides) and a decrease in free thiols (PMID: 15895891). Imipenem (thienamycin formamidine) is a broad-spectrum beta-lactam antibiotic, always used in combination with cilastatin in order to avoid the premature breakdown of imipenem by renal tubular dipeptidase. As this dipeptidase also hydrolyzes the glutathione metabolite cysteinylglycine, the therapeutic association of imipenem and cilastatin causes plasma levels of cysteinylglycine to increase significantly, while cysteine levels are decreased and homocysteine levels are unaffected. Therefore, antibiotic treatment using imipenem-cilastatin induces important metabolic changes that should not remain unrecognized (PMID: 15843241). L-Cysteinylglycine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=19246-18-5 (retrieved 2024-07-02) (CAS RN: 19246-18-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Gluconolactone
Gluconolactone, also known as glucono-delta-lactone or GDL (gluconate), belongs to the class of organic compounds known as gluconolactones. These are polyhydroxy acids (PHAs) containing a gluconolactone molecule, which is characterized by a tetrahydropyran substituted by three hydroxyl groups, one ketone group, and one hydroxymethyl group. Gluconolactone is a lactone of D-gluconic acid. Gluconolactone can be produced by enzymatic oxidation of D-glucose via the enzyme glucose oxidase. It is a fundamental metabolite found in all organisms ranging from bacteria to plants to animals. Gluconolactone has metal chelating, moisturizing and antioxidant activities. Its ability in free radicals scavenging accounts for its antioxidant properties. Gluconolactone, is also used as a food additive with the E-number E575. In foods it is used as a sequestrant, an acidifier or a curing, pickling, or leavening agent. Gluconolactone is also used as a coagulant in tofu processing. Gluconolactone is widely used as a skin exfoliant in cosmetic products, where it is noted for its mild exfoliating and hydrating properties. Pure gluconolactone is a white odorless crystalline powder. It is pH-neutral, but hydrolyses in water to gluconic acid which is acidic, adding a tangy taste to foods. Gluconic acid has roughly a third of the sourness of citric acid. One gram of gluconolactone yields roughly the same amount of metabolic energy as one gram of sugar. Food additive; uses include acidifier, pH control agent, sequestrant C26170 - Protective Agent > C275 - Antioxidant D-(+)-Glucono-1,5-lactone is a polyhydroxy (PHA) that is capable of metal chelating, moisturizing and antioxidant activity.
L-Gulonolactone
L-Gulonolactone (also known as reduced ascorbic acid, RAA) is the substrate of the enzyme L-gulono-1,4-lactone oxidoreductase (EC 1.1.3.8), which catalyzes the last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals. The enzyme L-Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans. L-Gulonolactone is present in human blood and has been used as one of the markers to compare changes in exercise-induced oxidative stress. (PMID: 16956367, 16494601) [HMDB] L-Gulonolactone (also known as reduced ascorbic acid, RAA) is the substrate of the enzyme L-gulono-1,4-lactone oxidoreductase (EC 1.1.3.8), which catalyzes the last step of the biosynthesis of L-ascorbic acid (vitamin C) in plants and animals. The enzyme L-Gulono-1,4-lactone oxidase is missing in scurvy-prone, vitamin C-deficient animals, such as humans. L-Gulonolactone is present in human blood and has been used as one of the markers to compare changes in exercise-induced oxidative stress. (PMID:16956367, 16494601). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Gulono-1,4-lactone is a substrate of L-gulono-1,4-lactone oxidoreductase, which catalyzes the last step of the biosynthesis of L-ascorbic (Vatamin) C. In other words, L-Gulono-1,4-lactone is a direct precursor of vitamin C in animals, in plants and in some protists.
3-Keto-b-D-galactose
3-Keto-b-D-galactose is an intermediate in Galactose metabolism, N-Glycan degradation, Glycosaminoglycan degradation, glycerolipid metabolism, Sphingolipid metabolism, Glycosphingolipid biosynthesis - ganglioseries and Glycan structures - degradation through the enzyme galactosidase, beta 1 [EC:3.2.1.23], and an intermediate of Fructose and mannose metabolism, Galactose metabolism, Ascorbate and aldarate metabolism, Bile acid biosynthesis, Glycine, serine and threonine metabolism, Lysine degradation, Bisphenol A degradation, Nucleotide sugars metabolism, Linoleic acid metabolism, Tetrachloroethene degradation, and Butanoate metabolism through th enzyme retinol dehydrogenase 13 (all-trans/9-cis) [EC:1.1.1.-] (KEGG). 3-keto-β-d-galactose, also known as 3-dehydro-β-D-galactose, is a member of the class of compounds known as hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moeity. 3-keto-β-d-galactose is soluble (in water) and a very weakly acidic compound (based on its pKa). 3-keto-β-d-galactose can be found in a number of food items such as pecan nut, common wheat, nopal, and grass pea, which makes 3-keto-β-d-galactose a potential biomarker for the consumption of these food products.
2-deoxy-D-gluc-5-ulosonic acid
5-Deoxy glucuronic acid
D-Arabino-hexos-2-ulose
D-Arabino-hexos-2-ulose is formed during sterilisation of foods by irradiation
2-Keto-3-deoxy-D-gluconic acid
2-Keto-3-deoxy-D-gluconic acid is a substrate for Fructose-bisphosphate aldolase A. [HMDB] 2-Keto-3-deoxy-D-gluconic acid is a substrate for Fructose-bisphosphate aldolase A.
Galactonolactone
Galactonolactone has been determined in human urine by reversed-phase HPLC for the specific evaluation of metabolic by-products in the urine of galactosemic patients and based on the simultaneous determination of gluconolactone, galactonolactone and galactitol. (PMID: 1797843). Patients with galactose-1-phosphate uridyltransferase (GALT) deficiency, given a load of galactose have been shown to excrete six times as much galactonate in their urine as normal subjects exposed to the same experimental conditions. The production of galactonate occurs through the activity of a soluble NAD+-dependent galactose dehydrogenase, catalyzing the conversion of galactose to D-galactonolactone (D-galactose: NAD+ oxidoreductase, EC 1.1.1.48). (OMMBID). Galactonolactone has been determined in human urine by reversed-phase HPLC for the specific evaluation of metabolic by-products in the urine of galactosemic patients and based on the simultaneous determination of gluconolactone, galactonolactone and galactitol. (PMID: 1797843)
(3R,4R,5R)-5-(1,2-dihydroxyethyl)-3,4-dihydroxyoxolan-2-one
D-Gulono-1,4-lactone
Acquisition and generation of the data is financially supported in part by CREST/JST. 1,4-D-Gulonolactone is an endogenous metabolite.
L-galactono-1,4-lactone
L-galactono-1,4-lactone, also known as L-galactonate-γ-lactone, is a member of the class of compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. L-galactono-1,4-lactone is soluble (in water) and a very weakly acidic compound (based on its pKa). L-galactono-1,4-lactone can be found in a number of food items such as abalone, pear, black-eyed pea, and borage, which makes L-galactono-1,4-lactone a potential biomarker for the consumption of these food products. L-galactono-1,4-lactone may be a unique S.cerevisiae (yeast) metabolite.
Methylthiomethyl 2-methylbutanethiolate
Methylthiomethyl 2-methylbutanethiolate is found in alcoholic beverages. Methylthiomethyl 2-methylbutanethiolate is isolated from hop oi
Glycyl-Cysteine
Glycyl-Cysteine is a dipeptide composed of glycine and cysteine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite.
2-[[(2S)-2-Amino-3-sulfanylpropanoyl]amino]acetic acid
(3R,4R,5S,6R)-3,4,5,6-Tetrahydroxyoxepan-2-one
Gluconolactone
C26170 - Protective Agent > C275 - Antioxidant D-(+)-Glucono-1,5-lactone is a polyhydroxy (PHA) that is capable of metal chelating, moisturizing and antioxidant activity.
3-C-carboxy-5-deoxy-alpha,beta-L-xylose|3-C-carboxy-5-deoxy-L-xylose|aceric acid|alpha,beta-L-aceric acid
(S)-12,13-epoxy-2,4,6,8,10-tridecapentayne|1,2S-Epoxide-1-Tridencene-3,5,7,9,11-pentayne
L-erythro-2-hydroxy-3-methoxy-glutaric acid|L-erythro-2-Hydroxy-3-methoxy-glutarsaeure
L-Gulonolactone
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Gulono-1,4-lactone is a substrate of L-gulono-1,4-lactone oxidoreductase, which catalyzes the last step of the biosynthesis of L-ascorbic (Vatamin) C. In other words, L-Gulono-1,4-lactone is a direct precursor of vitamin C in animals, in plants and in some protists.
Delta-Gluconolactone
D-(+)-Glucono-1,5-lactone is a polyhydroxy (PHA) that is capable of metal chelating, moisturizing and antioxidant activity.
Gly-cys
A dipeptide formed from glycine and L-cysteine residues.
Pyrido[2,3-b]pyrazin-2(1H)-one, 3-amino-8-hydroxy- (9CI)
2-OXO-2,3-DIHYDRO-1H-BENZO[D]IMIDAZOLE-5-CARBOXYLIC ACID
1H-1,2,3-Triazolo[4,5-c]pyridine-1-carboxylic acid,methyl ester
2-OXO-2,3-DIHYDRO-1H-PYRIDO[2,3-B][1,4]OXAZINE-7-CARBALDEHYDE
1-Methyl-5-(trifluoromethyl)-1H-pyrazole-4-carboxaldehyde
2-OXO-2,3-DIHYDRO-1H-BENZO[D]IMIDAZOLE-4-CARBOXYLIC ACID
Pyrrolo[1,2-a]pyrazine-1,3,4(2H)-trione, 2-methyl- (9CI)
5-cyano-2-methyl-6-oxo-1H-pyridine-3-carboxylic acid
Tirapazamine
C274 - Antineoplastic Agent > C798 - Radiosensitizing Agent D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents C2077 - Bioreductive Agent
2-Chlorocarbonyl-2-methyl-propionic acid ethylester
1H-Pyrrolo[2,3-b]pyridine-2-carboxylic acid, 3-hydroxy-
1H-Pyrrolo[2,3-b]pyridine-2-carboxylic acid, 4-hydroxy-
1H-Pyrrolo[2,3-b]pyridine-3-carboxylic acid 7-oxide
methyl [1,2,4]triazolo[1,5-a]pyrimidine-2-carboxylate
3-OXO-3,4-DIHYDRO-2H-PYRIDO[3,2-B][1,4]OXAZINE-6-CARBALDEHYDE
4-amino-7H-pyrrolo[2,3-d]pyrimidine-5-carboxylic acid
1,2-dihydro-5-(3-pyridinyl)-3h-1,2,4-triazole-3-thione
Pyrrolo[1,2-b]pyridazine-3-carboxylic acid, 1,4-dihydro-4-oxo-
2-aminopyrazolo[1,5-a]pyrimidine-3-carboxylic acid
1H-Benzimidazole-4,7-dione,2-(hydroxymethyl)-(9CI)
Carbonic acid,C,C-1,2-ethanediyl C,C-dimethyl ester
5,6-Dihydro-2,4,5-trihydroxy-6-(hydroxymethyl)-2H-pyran-3(4H)-one
L-cysteinylglycine zwitterion
The zwitterion of L-cysteinylglycine resulting from the transfer of a proton from the hydroxy group of glycine to the amino group of cysteine. Major microspecies at pH 7.3. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
2-Aminobenzoylacetate
A 3-oxo monocarboxylic acid anion obtained by deprotonation of the carboxy group of 2-aminobenzoylacetic acid; major species at pH 7.3.
(4R,5R)-5-(1,2-dihydroxyethyl)-3,4-dihydroxy-2-oxolanone
(5E)-5-(furan-2-ylmethylidene)imidazolidine-2,4-dione
L-Galactono-1,4-lactone
A galactonolactone that is 3,4-dihydroxydihydrofuran-2(3H)-one substituted by a 1,2-dihydroxyethyl group at position 5 (the 3S,4S,5R-isomer).
D-Gulono-1,4-lactone
1,4-D-Gulonolactone is an endogenous metabolite.
3,6-anhydro-L-galactonic acid
An anhydrohexose obtained by formation of a ring across the 3 and 6 positions of L-galactonic acid
(2S,3R,4S,5R)-3,4,5,6-tetrahydroxyoxane-2-carbaldehyde
N-Benzoylglycinate
An alpha-amino-acid anion that is the conjugate base of N-benzoylglycine; major species at pH 7.3.
2-Dehydro-3-deoxy-D-galactonic acid
The 2-dehydro-3-deoxy derivative of D-galactonic acid.
2-dehydro-3-deoxy-D-gluconic acid
The 2-dehydro-3-deoxy derivative of D-gluconic acid.
L-Cysteinylglycine
A dipeptide consisting of glycine having an L-cysteinyl attached to its alpha-amino group. It is an intermediate metabolite in glutathione metabolism.
L-Gulono-1,4-lactone
The furanose form of gulonolactone having L-configuration.
Etbicyphat
Etbicyphat (Trimethylopropane phosphate) is a potent GABA(A) receptors competitive antagonist. Etbicyphat induces epileptiform activities in hippocampal CA1 neurons, and binds to the GABA(A)-benzodiazepine receptors[1].