Exact Mass: 148.0516
Exact Mass Matches: 148.0516
Found 224 metabolites which its exact mass value is equals to given mass value 148.0516
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Cinnamic acid
Cinnamic acid is a monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. It has a role as a plant metabolite. It is a member of styrenes and a member of cinnamic acids. It is a conjugate acid of a cinnamate. Cinnamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cinnamic acid is a natural product found in Marsypopetalum crassum, Aiouea brenesii, and other organisms with data available. Cinnamic acid has the formula C6H5CHCHCOOH and is an odorless white crystalline acid, which is slightly soluble in water. It has a melting point of 133 degree centigrade and a boiling point of 300 degree centigrade. Cinnamic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon (part of); Chinese Cinnamon (part of); Stevia rebaudiuna Leaf (part of) ... View More ... Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID C016 Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
3,4-Dihydro-2H-1-benzopyran-2-one
3,4-Dihydro-2H-1-benzopyran-2-one, also known as 3,4-dihydrocoumarin or 1,2-benzodihydropyrone, belongs to the class of organic compounds known as 3,4-dihydrocoumarins. These are 3,4-dihydrogenated coumarins. Coumarin is a bicyclic compound that are 1-benzopyran carrying an oxo group at the 2-position. 3,4-Dihydro-2H-1-benzopyran-2-one exists in all living organisms, ranging from bacteria to humans. 3,4-Dihydro-2H-1-benzopyran-2-one is a sweet, almond, and cinnamon tasting compound. 3,4-Dihydro-2H-1-benzopyran-2-one has been detected, but not quantified, in several different foods, such as green vegetables, pulses, sour cherries, and tarragons. A chromanone that is the 3,4-dihydro derivative of coumarin. 3,4-dihydrocoumarin is a white to pale yellow clear oily liquid with a sweet odor. Solidifies around room temperature. (NTP, 1992) 3,4-dihydrocoumarin is a chromanone that is the 3,4-dihydro derivative of coumarin. It has a role as a plant metabolite. It is functionally related to a coumarin. 3,4-Dihydrocoumarin is a natural product found in Glebionis segetum, Prunus mahaleb, and other organisms with data available. Isolated from Melilotus officinalis (sweet clover). Flavouring ingredient. 3,4-Dihydro-2H-1-benzopyran-2-one is found in many foods, some of which are sour cherry, tarragon, green vegetables, and pulses. A chromanone that is the 3,4-dihydro derivative of coumarin. [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_20eV_CB000080.txt [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_30eV_CB000080.txt [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_10eV_CB000080.txt Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1].
P-Coumaraldehyde
p-Coumaraldehyde (CAS: 2538-87-6), also known as 4-hydroxycinnamaldehyde or 3-(4-hydroxyphenyl)-2-propenal, belongs to the class of organic compounds known as cinnamaldehydes. These are organic aromatic compounds containing a cinnamlaldehyde moiety, consisting of a benzene and an aldehyde group to form 3-phenylprop-2-enal. p-Coumaraldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, p-coumaraldehyde has been detected, but not quantified in, several different foods, such as red rice, lindens, peaches, white lupines, and evergreen huckleberries. This could make p-coumaraldehyde a potential biomarker for the consumption of these foods. p-Coumaraldehyde is also a constituent of Alpinia galanga (greater galangal) rhizomes and Cucurbita maxima. Constituent of Alpinia galanga (greater galangal) rhizomes Cucurbita maxima. (E)-3-(4-Hydroxyphenyl)-2-propenal is found in many foods, some of which are climbing bean, japanese walnut, chicory leaves, and walnut.
1-Phenyl-1,2-propanedione
1-Phenyl-1,2-propanedione is found in coffee and coffee products. 1-Phenyl-1,2-propanedione is present in coffee aroma. 1-Phenyl-1,2-propanedione is a flavouring ingredient. Present in coffee aroma. Flavouring ingredient. 1-Phenyl-1,2-propanedione is found in coffee and coffee products. 1-Phenylpropane-1,2-dione, isolated from young Ephedra sinica Stapf (Ephedraceae), is biosynthetic precursors of the ephedrine alkaloids[1][2]. 1-Phenylpropane-1,2-dione, isolated from young Ephedra sinica Stapf (Ephedraceae), is biosynthetic precursors of the ephedrine alkaloids[1][2].
Hydroxylated lecithin
Hydroxylated lecithin is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
Cinnamic acid
Cinnamic acid, also known as (Z)-cinnamate or 3-phenyl-acrylate, belongs to the class of organic compounds known as cinnamic acids. These are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Cinnamic acid can be obtained from oil of cinnamon, or from balsams such as storax. Cinnamic acid is a weakly acidic compound (based on its pKa). It is a white crystalline compound that is slightly soluble in water, and freely soluble in many organic solvents. Cinnamic acid exists in all living organisms, ranging from bacteria to plants to humans. Outside of the human body, cinnamic acid has been detected, but not quantified in, chinese cinnamons. In plants, cinnamic acid is a central intermediate in the biosynthesis of myriad natural products include lignols (precursors to lignin and lignocellulose), flavonoids, isoflavonoids, coumarins, aurones, stilbenes, catechin, and phenylpropanoids. CONFIDENCE standard compound; INTERNAL_ID 191; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3778; ORIGINAL_PRECURSOR_SCAN_NO 3776 CONFIDENCE standard compound; INTERNAL_ID 191; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3783; ORIGINAL_PRECURSOR_SCAN_NO 3781 Cinnamic acid is a white crystalline hydroxycinnamic acid, which is slightly soluble in water. It is obtained from oil of cinnamon, or from balsams such as storax. cis-Cinnamic acid is found in chinese cinnamon. CONFIDENCE standard compound; INTERNAL_ID 183 Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
trans-Cinnamic acid
trans-Cinnamic acid, also known as (e)-cinnamic acid or phenylacrylic acid, belongs to the class of organic compounds known as cinnamic acids. These are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. trans-Cinnamic acid exists in all living species, ranging from bacteria to humans. trans-Cinnamic acid is a sweet, balsam, and cinnamon tasting compound. Outside of the human body, trans-Cinnamic acid is found, on average, in the highest concentration within a few different foods, such as chinese cinnamons, olives, and lingonberries and in a lower concentration in redcurrants, red raspberries, and corianders. trans-Cinnamic acid has also been detected, but not quantified in several different foods, such as common oregano, pepper (spice), fennels, pomegranates, and european cranberries. This could make trans-cinnamic acid a potential biomarker for the consumption of these foods. Cinnamic acid has been shown to be a microbial metabolite; it can be found in Alcaligenes, Brevibacterium, Cellulomonas, and Pseudomonas (PMID:16349793). trans-Cinnamic acid is a potentially toxic compound. Cinnamic acid is a white crystalline hydroxycinnamic acid, which is slightly soluble in water. It is obtained from oil of cinnamon, or from balsams such as storax. Cinnamic acid is found in many foods, some of which are green bell pepper, olive, pepper (spice), and pear. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
3-(Methylthio)propyl acetate
3-(Methylthio)propyl acetate is found in alcoholic beverages. 3-(Methylthio)propyl acetate is found in apple, melon, pineapple, beer, whisky and wine. 3-(Methylthio)propyl acetate is a flavouring agent Found in apple, melon, pineapple, beer, whisky and wine. Flavouring agent
Di-2-furanylmethane
Di-2-furanylmethane is found in coffee and coffee products. Di-2-furanylmethane is a minor constituent of coffee. Minor constituent of coffee. Di-2-furanylmethane is found in coffee and coffee products.
(E)-3-(2-Hydroxyphenyl)-2-propenal
(E)-3-(2-Hydroxyphenyl)-2-propenal is found in herbs and spices. (E)-3-(2-Hydroxyphenyl)-2-propenal is a constituent of the bark of Cinnamomum cassia (Chinese cinnamon)
Ethyl 3-(methylthio)propanoate
Isolated from pineapple (Ananas comosus), melon, passion fruit and other fruitsand is) also present in alcoholic beverages and Parmesan cheese. Flavouring ingredient. Ethyl 3-(methylthio)propanoate is found in many foods, some of which are milk and milk products, pineapple, fruits, and alcoholic beverages. Ethyl 3-(methylthio)propanoate is found in alcoholic beverages. Ethyl 3-(methylthio)propanoate is isolated from pineapple (Ananas comosus), melon, passion fruit and other fruits. Also present in alcoholic beverages and Parmesan cheese. Ethyl 3-(methylthio)propanoate is a flavouring ingredient.
Ethyl 3-mercaptobutyrate
Ethyl 3-mercaptobutyrate is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") It is used as a food additive .
Methyl 3-(methylthio)butanoate
Methyl 3-(methylthio)butanoate is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") It is used as a food additive .
Propyl 2-mercaptopropionate
Propyl 2-mercaptopropionate is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
3-Mercapto-3-methylbutyl formate
3-Mercapto-3-methylbutyl formate is found in coffee and coffee products. 3-Mercapto-3-methylbutyl formate is present in coffee volatiles. 3-Mercapto-3-methylbutyl formate is a flavouring agent Present in coffee volatiles. Flavouring agent. 3-Mercapto-3-methylbutyl formate is found in coffee and coffee products.
Methyl 4-(methylthio)butyrate
Methyl 4-(methylthio)butyrate is a flavouring ingredient. Flavouring ingredient
Methylthiomethyl butyrate
Methylthiomethyl butyrate is a flavouring agent especially for seasonings. Flavouring agent especies for seasonings
2,4,6-Trimethyl-1,3,5-dioxathiane
2,4,6-Trimethyl-1,3,5-dioxathiane is a component of an onion-like flavouring. Component of an onion-like flavouring
Methyl 2-(methylthio)butyrate
Methyl 2-(methylthio)butyrate is found in milk and milk products. Methyl 2-(methylthio)butyrate is a flavouring ingredient. Methyl 2-(methylthio)butyrate is present in cheese. Methyl 2-(methylthio)butyrate is a flavouring ingredient. It is found in milk and milk products.
(+/-)-3-Mercapto-1-butyl acetate
It is used as a food additive .
Cinnamic Acid
Trans-cinnamic acid, also known as (2e)-3-phenyl-2-propenoic acid or (E)-cinnamate, is a member of the class of compounds known as cinnamic acids. Cinnamic acids are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Trans-cinnamic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Trans-cinnamic acid is a sweet, balsam, and honey tasting compound and can be found in a number of food items such as maitake, mustard spinach, common wheat, and barley, which makes trans-cinnamic acid a potential biomarker for the consumption of these food products. Trans-cinnamic acid can be found primarily in saliva. Trans-cinnamic acid exists in all living species, ranging from bacteria to humans. Trans-cinnamic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cinnamic acid is an organic compound with the formula C6H5CHCHCO2H. It is a white crystalline compound that is slightly soluble in water, and freely soluble in many organic solvents. Classified as an unsaturated carboxylic acid, it occurs naturally in a number of plants. It exists as both a cis and a trans isomer, although the latter is more common . Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
(()-3,5,7-Nonatriyne-1,2-diol|(-)-3,5,7-Nonatriyne-1,2-diol|(-)-nona-3,5,7-triyne-1,2-diol|(-)-Nona-3.5.7-triin-1.2-diol
trans-cinnamic acid
The E (trans) isomer of cinnamic acid Annotation level-1 trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
cinnamate
trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
Vinyl benzoate
An enoate ester obtained by the formal condensation of the carboxy group of benzoic acid with ethenol. Metabolite observed in cancer metabolism.
2-(1H-1,2,4-TRIAZOL-1-YL)ETHANAMINE DIHYDROCHLORIDE
3-METHYL-1H-1,2,4-TRIAZOLE-5-METHANAMINEHYDROCHLORIDE
N2-[(Isoquinolin-1-yl)methylene]-1-pyrrolidinecarbothiohydrazide
5-(Difluoromethyl)-1-methyl-1,2-dihydro-3H-pyrazol-3-one
Zimtsaeure
Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
AI3-23868
1-Phenylpropane-1,2-dione, isolated from young Ephedra sinica Stapf (Ephedraceae), is biosynthetic precursors of the ephedrine alkaloids[1][2]. 1-Phenylpropane-1,2-dione, isolated from young Ephedra sinica Stapf (Ephedraceae), is biosynthetic precursors of the ephedrine alkaloids[1][2].
melilotin
Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1].
(E)-3-(2-Hydroxyphenyl)-2-propenal
(e)-3-(2-hydroxyphenyl)-2-propenal is a member of the class of compounds known as cinnamaldehydes. Cinnamaldehydes are organic aromatic compounds containing a cinnamlaldehyde moiety, consisting of a benzene and an aldehyde group to form 3-phenylprop-2-enal (e)-3-(2-hydroxyphenyl)-2-propenal is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). (e)-3-(2-hydroxyphenyl)-2-propenal can be found in herbs and spices, which makes (e)-3-(2-hydroxyphenyl)-2-propenal a potential biomarker for the consumption of this food product. (E)-3-(2-Hydroxyphenyl)-2-propenal is found in herbs and spices. (E)-3-(2-Hydroxyphenyl)-2-propenal is a constituent of the bark of Cinnamomum cassia (Chinese cinnamon)
N,N-dihydroxy-L-valinate
An N,N-dihydroxy-alpha-amino-acid anion resulting from removal of a proton from the carboxylic acid group of N,N-dihydroxy-L-valine.
(2S,3S)-2-azaniumyl-3-carbamoyl-3-hydroxypropanoate
Methioninate
A sulfur-containing amino-acid anion that is the conjugate base of methionine, arising from deprotonation of the carboxy group.
trans-Cinnamic acid
trans-Cinnamic acid, also known as (e)-cinnamic acid or phenylacrylic acid, belongs to the class of organic compounds known as cinnamic acids. These are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. trans-Cinnamic acid exists in all living species, ranging from bacteria to humans. trans-Cinnamic acid is a sweet, balsam, and cinnamon tasting compound. Outside of the human body, trans-Cinnamic acid is found, on average, in the highest concentration within a few different foods, such as chinese cinnamons, olives, and lingonberries and in a lower concentration in redcurrants, red raspberries, and corianders. trans-Cinnamic acid has also been detected, but not quantified in several different foods, such as common oregano, pepper (spice), fennels, pomegranates, and european cranberries. This could make trans-cinnamic acid a potential biomarker for the consumption of these foods. Cinnamic acid has been shown to be a microbial metabolite; it can be found in Alcaligenes, Brevibacterium, Cellulomonas, and Pseudomonas (PMID:16349793). trans-Cinnamic acid is a potentially toxic compound. Cinnamic acid is a monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. It has a role as a plant metabolite. It is a member of styrenes and a member of cinnamic acids. It is a conjugate acid of a cinnamate. Cinnamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cinnamic acid is a natural product found in Marsypopetalum crassum, Aiouea brenesii, and other organisms with data available. Cinnamic acid has the formula C6H5CHCHCOOH and is an odorless white crystalline acid, which is slightly soluble in water. It has a melting point of 133 degree centigrade and a boiling point of 300 degree centigrade. Cinnamic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon (part of); Chinese Cinnamon (part of); Stevia rebaudiuna Leaf (part of) ... View More ... Cinnamic acid is a white crystalline hydroxycinnamic acid, which is slightly soluble in water. It is obtained from oil of cinnamon, or from balsams such as storax. Cinnamic acid is found in many foods, some of which are green bell pepper, olive, pepper (spice), and pear. A monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
1-Phenylpropane-1,2-dione
An alpha-diketone that consists of 1-phenylpropane bearing keto substituents at positions 1 and 2. It is found in coffee. 1-Phenylpropane-1,2-dione, isolated from young Ephedra sinica Stapf (Ephedraceae), is biosynthetic precursors of the ephedrine alkaloids[1][2]. 1-Phenylpropane-1,2-dione, isolated from young Ephedra sinica Stapf (Ephedraceae), is biosynthetic precursors of the ephedrine alkaloids[1][2].
N-Hydroxy-L-asparagine
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents
O-Carbamoyl-L-serine
A non-proteinogenic L-alpha-amino acid that is the O-carbamoyl derivative of L-serine.
O-carbamoyl-L-serine zwitterion
Zwitterionic form of O-carbamoyl-L-serine having an anionic carboxy group and a protonated amino group.
beta-L-aspartylhydroxamic acid zwitterion
Zwitterionic form of beta-L-aspartylhydroxamic acid having an anionic carboxy group and a protonated amino group.
Ethyl 3-methylthiopropionate
A carboxylic ester obtained by the formal condensation of the carboxy group of 3-(methylthio)propionic acid with ethanol.
3-methylthiopropyl acetate
An acetate ester obtained by the formal condensation of the hydroxy group of 3-(methylsulfanyl)propan-1-ol with acetic acid.
beta-L-Aspartylhydroxamic acid
A non-proteinogenic L-alpha-amino acid that is L-asparagine hydroxylated at N-4.
4-Hydroxycinnamaldehyde
A cinnamaldehyde that is (E)-cinnamaldehyde substituted at position 4 on the phenyl ring by a hydroxy group.
(3S)-3-hydroxy-L-asparagine
A non-proteinogenic L-alpha-amino acid that is the (3S)-hydroxy-derivative of L-asparagine.
(3S)-3-hydroxy-L-asparagine zwitterion
Zwitterionic form of (3S)-3-hydroxy-L-asparagine.
(1r,3s)-4-(buta-1,3-diyn-1-yl)cyclopent-4-ene-1,3-diol
2'-hydroxycinnamaldehyde
{"Ingredient_id": "HBIN005791","Ingredient_name": "2'-hydroxycinnamaldehyde","Alias": "NA","Ingredient_formula": "C9H8O2","Ingredient_Smile": "C1=CC=C(C(=C1)C=CC=O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT15819","TCMID_id": "9907","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
3-benzofuranylmethanol
{"Ingredient_id": "HBIN007995","Ingredient_name": "3-benzofuranylmethanol","Alias": "1-benzofuran-3-ylmethanol; benzofuran-3-ylmethanol","Ingredient_formula": "C9H8O2","Ingredient_Smile": "C1=CC=C2C(=C1)C(=CO2)CO","Ingredient_weight": "148.16 g/mol","OB_score": "29.46456271","CAS_id": "36739-86-3?","SymMap_id": "SMIT11350","TCMID_id": "NA","TCMSP_id": "MOL010291","TCM_ID_id": "NA","PubChem_id": "3666346","DrugBank_id": "NA"}