Exact Mass: 1108.6505246
Exact Mass Matches: 1108.6505246
Found 70 metabolites which its exact mass value is equals to given mass value 1108.6505246
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Ginsenoside Rb1
Ginsenoside Rb1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is ginsenoside Rd in which the beta-D-glucopyranoside group at position 20 is replaced by a beta-D-glucopyranosyl-beta-D-glucopyranoside group. It has a role as a neuroprotective agent, an anti-obesity agent, an anti-inflammatory drug, an apoptosis inhibitor, a radical scavenger and a plant metabolite. It is a ginsenoside, a glycoside and a tetracyclic triterpenoid. It is functionally related to a ginsenoside Rd. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rb1 appears to be most abundant in Panax quinquefolius (American Ginseng). Rb1 seems to affect the reproductive system in animal testicles. Recent research shows that Rb1 affects rat embryo development and has teratogenic effects, causing birth defects. Another study shows that Rb1 may increase testosterone production in male rats indirectly through the stimulation of the luteinizing hormone. Ginsenoside rb1 is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). Ginsenoside Rb1 is found in tea. Ginsenoside Rb1 is a constituent of Panax ginseng (ginseng) Constituent of Panax ginseng (ginseng). Ginsenoside Rb1 is found in tea. Ginsenoside Rb1. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=41753-43-9 (retrieved 2024-06-29) (CAS RN: 41753-43-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 . Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 .
2,4-Bis(1-decyloxyethyl)deuteroporphyrinyl-6,7-bisaspartic acid
3beta,12beta,20S-trihydroxy-25-methoxydammar-23-ene 3-O-beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranosyl-20-O-beta-D-xylopyranosyl-(1->6)-beta-D-glucopyranoside|quinquefoloside-Lc
6-O-[alpha-L-rhamnopyranosyl(1?2)-beta-D-glucopyranosyl]-20-O-[beta-D-glucopyranosyl(1?4)-beta-D-glucopyranosyl]-3beta,6alpha,12beta,20beta-tetrahydroxydammar-24-ene|quinquenoside Ja
Ginsenoside Rb1
Annotation level-1 [Raw Data] CB036_Ginsenoside-Rb1_pos_50eV_000002.txt [Raw Data] CB036_Ginsenoside-Rb1_pos_40eV_000002.txt [Raw Data] CB036_Ginsenoside-Rb1_pos_30eV_000002.txt [Raw Data] CB036_Ginsenoside-Rb1_pos_20eV_000002.txt [Raw Data] CB036_Ginsenoside-Rb1_pos_10eV_000002.txt Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 . Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 .
LS-71528
Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 . Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 .
C54H92O23_beta-D-Glucopyranoside, (3beta,9xi,12beta,17xi)-20-[(6-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl)oxy]-12-hydroxydammar-24-en-3-yl 2-O-beta-D-glucopyranosyl
(2R,3R,4S,5S,6R)-2-[[(2R,3S,4S,5R,6S)-6-[(2S)-2-[(3S,5R,8R,10R,12R,13R,14R)-3-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-12-hydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]-6-methylhept-5-en-2-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
GRb 1
Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 . Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 .
2,2-[2,7,12,18-Tetramethyl-3,8-bis[1-(decyloxy)ethyl]-21H,23H-porphyrin-13,17-diylbis(1-oxo-3,1-propanediylimino)]bis(butanedioic acid)
(2S,3S,4R,5R,6S)-2-[[(2S,3R,4R,5S,6R)-6-[(2R)-2-[(3R,5S,8S,9S,10S,12S,13S,14S,17R)-3-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-12-hydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]-6-methylhept-5-en-2-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
[1-[[3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] hexadecanoate
[3-[[3-[[3-hexadecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (9Z,12Z)-octadeca-9,12-dienoate
[3-[[3-[2,3-bis[[(Z)-hexadec-9-enoyl]oxy]propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (Z)-hexadec-9-enoate
[3-[[3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] octadecanoate
[3-[[3-[[3-[(Z)-hexadec-9-enoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (Z)-octadec-9-enoate
[3-[[3-[[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (Z)-octadec-9-enoate
[3-[[3-[2,3-di(tetradecanoyloxy)propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[3-[[3-[[3-[(Z)-hexadec-9-enoyl]oxy-2-tetradecanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (9Z,12Z)-octadeca-9,12-dienoate
[3-[[3-[(3-hexadecanoyloxy-2-tetradecanoyloxypropoxy)-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
5-acetamido-2-[2-[6-[2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxypentadecoxy]-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4-hydroxy-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid
5-acetamido-2-[2-[6-[(E)-2-[[(Z)-hexadec-7-enoyl]amino]-3-hydroxypentadec-4-enoxy]-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4-hydroxy-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid
5-acetamido-2-[2-[4,5-dihydroxy-2-(hydroxymethyl)-6-[(E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]heptadec-4-enoxy]oxan-3-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4-hydroxy-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid
5-acetamido-2-[2-[4,5-dihydroxy-2-(hydroxymethyl)-6-[(E)-3-hydroxy-2-[[(Z)-tridec-8-enoyl]amino]octadec-4-enoxy]oxan-3-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4-hydroxy-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid
5-acetamido-2-[2-[4,5-dihydroxy-2-(hydroxymethyl)-6-[(E)-3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]hexadec-4-enoxy]oxan-3-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4-hydroxy-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid
5-acetamido-2-[2-[6-[(E)-2-[[(Z)-dodec-5-enoyl]amino]-3-hydroxynonadec-4-enoxy]-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-4-hydroxy-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid
Ginsenoside_Rb1
Ginsenoside Rb1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is ginsenoside Rd in which the beta-D-glucopyranoside group at position 20 is replaced by a beta-D-glucopyranosyl-beta-D-glucopyranoside group. It has a role as a neuroprotective agent, an anti-obesity agent, an anti-inflammatory drug, an apoptosis inhibitor, a radical scavenger and a plant metabolite. It is a ginsenoside, a glycoside and a tetracyclic triterpenoid. It is functionally related to a ginsenoside Rd. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rb1 appears to be most abundant in Panax quinquefolius (American Ginseng). Rb1 seems to affect the reproductive system in animal testicles. Recent research shows that Rb1 affects rat embryo development and has teratogenic effects, causing birth defects. Another study shows that Rb1 may increase testosterone production in male rats indirectly through the stimulation of the luteinizing hormone. Ginsenoside rb1 is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is ginsenoside Rd in which the beta-D-glucopyranoside group at position 20 is replaced by a beta-D-glucopyranosyl-beta-D-glucopyranoside group. Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 . Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 .
GM3(31:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved