Exact Mass: 1044.5786224

Exact Mass Matches: 1044.5786224

Found 198 metabolites which its exact mass value is equals to given mass value 1044.5786224, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Jujuboside B

2-[(4-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-5-hydroxy-2-{[16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C52H84O21 (1044.5504814)


Jujuboside B is a triterpenoid. Jujuboside B is a natural product found in Ziziphus spina-christi, Ziziphus jujuba, and Hovenia dulcis with data available. Jujuboside B1 is found in fruits. Jujuboside B1 is isolated from seeds of Zizyphus jujuba (Chinese date). Isolated from seeds of Zizyphus jujuba (Chinese date). Jujuboside B1 is found in fruits. Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1]. Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1].

   

Pitheduloside F

10-({6-[({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)methyl]-4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl}oxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


Pitheduloside G is found in fruits. Pitheduloside G is a constituent of Pithecellobium dulce (Manila tamarind) Constituent of Pithecellobium dulce (Manila tamarind). Pitheduloside F is found in fruits.

   

Caraganoside A

3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-[(5-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


Caraganoside A is found in green vegetables. Caraganoside A is a constituent of Aralia elata (Japanese angelica tree). Constituent of Aralia elata (Japanese angelica tree). Caraganoside A is found in green vegetables.

   

CL(8:0/8:0/8:0/18:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] octadecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/8:0/18:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/8:0/18:0) contains three chains of octanoic acid at the C1, C2 and C3 positions, one chain of octadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/8:0/i-18:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] 16-methylheptadecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/8:0/i-18:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/8:0/i-18:0) contains three chains of octanoic acid at the C1, C2 and C3 positions, one chain of 16-methylheptadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/10:0/16:0)

[(2R)-1-decanoyloxy-3-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] hexadecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/10:0/16:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/10:0/16:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of decanoic acid at the C3 position, one chain of hexadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/10:0/i-16:0)

[(2R)-1-decanoyloxy-3-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] 14-methylpentadecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/10:0/i-16:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/10:0/i-16:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of decanoic acid at the C3 position, one chain of 14-methylpentadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/11:0/15:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] pentadecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/11:0/15:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/11:0/15:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of undecanoic acid at the C3 position, one chain of pentadecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/11:0/a-15:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] 12-methyltetradecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/11:0/a-15:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/11:0/a-15:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of undecanoic acid at the C3 position, one chain of 12-methyltetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/11:0/i-15:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] 13-methyltetradecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/11:0/i-15:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/11:0/i-15:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of undecanoic acid at the C3 position, one chain of 13-methyltetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/12:0/14:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] tetradecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/12:0/14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/12:0/14:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of dodecanoic acid at the C3 position, one chain of tetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/12:0/i-14:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] 12-methyltridecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/12:0/i-14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/12:0/i-14:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of dodecanoic acid at the C3 position, one chain of 12-methyltridecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/i-12:0/14:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-(10-methylundecanoyloxy)propan-2-yl] tetradecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/i-12:0/14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/i-12:0/14:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of 10-methylundecanoic acid at the C3 position, one chain of tetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/i-12:0/i-14:0)

[(2R)-1-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-(10-methylundecanoyloxy)propan-2-yl] 12-methyltridecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/i-12:0/i-14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/i-12:0/i-14:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of 10-methylundecanoic acid at the C3 position, one chain of 12-methyltridecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/13:0/13:0)

[(2R)-3-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-tridecanoyloxypropyl] tridecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/13:0/13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/13:0/13:0) contains two chains of octanoic acid at the C1 and C2 positions, two chains of tridecanoic acid at the C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/13:0/a-13:0)

[(2S)-3-({[(2R)-2,3-bis(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-[(10-methyldodecanoyl)oxy]-3-(tridecanoyloxy)propoxy]phosphinic acid

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/13:0/a-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/13:0/a-13:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of tridecanoic acid at the C3 position, one chain of 10-methyldodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/13:0/i-13:0)

[(2S)-3-({[(2R)-2,3-bis(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-[(11-methyldodecanoyl)oxy]-3-(tridecanoyloxy)propoxy]phosphinic acid

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/13:0/i-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/13:0/i-13:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of tridecanoic acid at the C3 position, one chain of 11-methyldodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/a-13:0/a-13:0)

[(2R)-3-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-(10-methyldodecanoyloxy)propyl] 10-methyldodecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/a-13:0/a-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/a-13:0/a-13:0) contains two chains of octanoic acid at the C1 and C2 positions, two chains of 10-methyldodecanoic acid at the C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/a-13:0/i-13:0)

[(2S)-3-({[(2R)-2,3-bis(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-3-[(10-methyldodecanoyl)oxy]-2-[(11-methyldodecanoyl)oxy]propoxy]phosphinic acid

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/a-13:0/i-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/a-13:0/i-13:0) contains two chains of octanoic acid at the C1 and C2 positions, one chain of 10-methyldodecanoic acid at the C3 position, one chain of 11-methyldodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/8:0/i-13:0/i-13:0)

[(2R)-3-[[(2S)-3-[[(2R)-2,3-di(octanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-(11-methyldodecanoyloxy)propyl] 11-methyldodecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/8:0/i-13:0/i-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/8:0/i-13:0/i-13:0) contains two chains of octanoic acid at the C1 and C2 positions, two chains of 11-methyldodecanoic acid at the C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/10:0/14:0)

[(2R)-1-decanoyloxy-3-[[(2S)-3-[[(2R)-2-decanoyloxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] tetradecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/10:0/10:0/14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/10:0/14:0) contains one chain of octanoic acid at the C1 position, two chains of decanoic acid at the C2 and C3 positions, one chain of tetradecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/10:0/i-14:0)

[(2R)-3-(decanoyloxy)-2-[(12-methyltridecanoyl)oxy]propoxy][(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphinic acid

C51H98O17P2 (1044.6278918)


CL(8:0/10:0/10:0/i-14:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/10:0/i-14:0) contains one chain of octanoic acid at the C1 position, two chains of decanoic acid at the C2 and C3 positions, one chain of 12-methyltridecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/11:0/13:0)

[(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-(tridecanoyloxy)-3-(undecanoyloxy)propoxy]phosphinic acid

C51H98O17P2 (1044.6278918)


CL(8:0/10:0/11:0/13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/11:0/13:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, one chain of undecanoic acid at the C3 position, one chain of tridecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/11:0/a-13:0)

[(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-[(10-methyldodecanoyl)oxy]-3-(undecanoyloxy)propoxy]phosphinic acid

C51H98O17P2 (1044.6278918)


CL(8:0/10:0/11:0/a-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/11:0/a-13:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, one chain of undecanoic acid at the C3 position, one chain of 10-methyldodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/11:0/i-13:0)

[(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-[(11-methyldodecanoyl)oxy]-3-(undecanoyloxy)propoxy]phosphinic acid

C51H98O17P2 (1044.6278918)


CL(8:0/10:0/11:0/i-13:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/11:0/i-13:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, one chain of undecanoic acid at the C3 position, one chain of 11-methyldodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/12:0/12:0)

[(2R)-3-[[(2S)-3-[[(2R)-2-decanoyloxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-dodecanoyloxypropyl] dodecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/10:0/12:0/12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/12:0/12:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, two chains of dodecanoic acid at the C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/12:0/i-12:0)

[(2S)-3-({[(2R)-2-(decanoyloxy)-3-(octanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-3-(dodecanoyloxy)-2-[(10-methylundecanoyl)oxy]propoxy]phosphinic acid

C51H98O17P2 (1044.6278918)


CL(8:0/10:0/12:0/i-12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/12:0/i-12:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, one chain of dodecanoic acid at the C3 position, one chain of 10-methylundecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/10:0/i-12:0/i-12:0)

[(2R)-3-[[(2S)-3-[[(2R)-2-decanoyloxy-3-octanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-(10-methylundecanoyloxy)propyl] 10-methylundecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/10:0/i-12:0/i-12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/10:0/i-12:0/i-12:0) contains one chain of octanoic acid at the C1 position, one chain of decanoic acid at the C2 position, two chains of 10-methylundecanoic acid at the C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/11:0/11:0/12:0)

[(2R)-1-[hydroxy-[(2S)-2-hydroxy-3-[hydroxy-[(2R)-3-octanoyloxy-2-undecanoyloxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxy-3-undecanoyloxypropan-2-yl] dodecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/11:0/11:0/12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/11:0/11:0/12:0) contains one chain of octanoic acid at the C1 position, two chains of undecanoic acid at the C2 and C3 positions, one chain of dodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(8:0/11:0/11:0/i-12:0)

[(2R)-1-[hydroxy-[(2S)-2-hydroxy-3-[hydroxy-[(2R)-3-octanoyloxy-2-undecanoyloxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxy-3-undecanoyloxypropan-2-yl] 10-methylundecanoate

C51H98O17P2 (1044.6278918)


CL(8:0/11:0/11:0/i-12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(8:0/11:0/11:0/i-12:0) contains one chain of octanoic acid at the C1 position, two chains of undecanoic acid at the C2 and C3 positions, one chain of 10-methylundecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(10:0/10:0/10:0/12:0)

[(2R)-1-decanoyloxy-3-[[(2S)-3-[[(2R)-2,3-di(decanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] dodecanoate

C51H98O17P2 (1044.6278918)


CL(10:0/10:0/10:0/12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(10:0/10:0/10:0/12:0) contains three chains of decanoic acid at the C1, C2 and C3 positions, one chain of dodecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(10:0/10:0/10:0/i-12:0)

[(2R)-1-decanoyloxy-3-[[(2S)-3-[[(2R)-2,3-di(decanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] 10-methylundecanoate

C51H98O17P2 (1044.6278918)


CL(10:0/10:0/10:0/i-12:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(10:0/10:0/10:0/i-12:0) contains three chains of decanoic acid at the C1, C2 and C3 positions, one chain of 10-methylundecanoic acid at the C4 position. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

CL(10:0/10:0/11:0/11:0)

[(2R)-3-[[(2S)-3-[[(2R)-2,3-di(decanoyloxy)propoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] undecanoate

C51H98O17P2 (1044.6278918)


CL(10:0/10:0/11:0/11:0) is a cardiolipin (CL). Cardiolipins are sometimes called a double phospholipid because they have four fatty acid tails, instead of the usual two. CL(10:0/10:0/11:0/11:0) contains two chains of decanoic acid at the C1 and C2 positions, two chains of undecanoic acid at the C3 and C4 positions. Cardiolipins are known to be present in all mammalian cells especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP- DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form  phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins will immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID:16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID:16442164). Tafazzin is an important enzyme in the remodeling of cardiolipins, and opposite to cardiolipin synthase, it shows strong acyl specificity. This suggest that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipin and is the cause of Barth syndrome (BTHS), a X-linked human disease (PMID: 16973164). BTHS patients seems to lack acyl specificity and as a result, there are many potential cardiolipin species that can exists (PMID: 16226238). Common fatty acyl chains determined through methods such as gas chromatography and high-performance liquid chromatography are used to generate various cardiolipins and a representative molecule is chosen from each variation.

   

PIP(20:0/PGF2alpha)

{[(1S,6R,12E,15S,16S,18R,19S,20R,21R,22R,23S,24R)-3,16,18,20,22,23,24-heptahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-[(icosanoyloxy)methyl]-3,8-dioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracos-12-en-21-yl]oxy}phosphonic acid

C49H90O19P2 (1044.5551249999999)


PIP(20:0/PGF2alpha) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:0/PGF2alpha), in particular, consists of one chain of eicosanoyl at the C-1 position and one chain of Prostaglandin F2alpha at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(PGF2alpha/20:0)

{[(1S,6R,13E,16S,17S,19R,20S,21R,22R,23R,24S,25R)-3,17,19,21,23,24,25-heptahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-(icosanoyloxy)-3,9-dioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacos-13-en-22-yl]oxy}phosphonic acid

C49H90O19P2 (1044.5551249999999)


PIP(PGF2alpha/20:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(PGF2alpha/20:0), in particular, consists of one chain of Prostaglandin F2alpha at the C-1 position and one chain of eicosanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:0/PGE1)

{[(1S,6R,15R,18R,19S,20R,21R,22R,23S,24R)-3,18,20,22,23,24-hexahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-[(icosanoyloxy)methyl]-3,8,16-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosan-21-yl]oxy}phosphonic acid

C49H90O19P2 (1044.5551249999999)


PIP(20:0/PGE1) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:0/PGE1), in particular, consists of one chain of eicosanoyl at the C-1 position and one chain of Prostaglandin E1 at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(PGE1/20:0)

{[(1S,6R,16R,19R,20S,21R,22R,23R,24S,25R)-3,19,21,23,24,25-hexahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-(icosanoyloxy)-3,9,17-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosan-22-yl]oxy}phosphonic acid

C49H90O19P2 (1044.5551249999999)


PIP(PGE1/20:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(PGE1/20:0), in particular, consists of one chain of Prostaglandin E1 at the C-1 position and one chain of eicosanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:0/PGD1)

{[(1S,6R,15S,16S,19R,20R,21R,22R,23S,24R)-3,16,20,22,23,24-hexahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-[(icosanoyloxy)methyl]-3,8,18-trioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosan-21-yl]oxy}phosphonic acid

C49H90O19P2 (1044.5551249999999)


PIP(20:0/PGD1) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:0/PGD1), in particular, consists of one chain of eicosanoyl at the C-1 position and one chain of Prostaglandin D1 at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(PGD1/20:0)

{[(1S,6R,16S,17S,20R,21R,22R,23R,24S,25R)-3,17,21,23,24,25-hexahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-(icosanoyloxy)-3,9,19-trioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosan-22-yl]oxy}phosphonic acid

C49H90O19P2 (1044.5551249999999)


PIP(PGD1/20:0) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(PGD1/20:0), in particular, consists of one chain of Prostaglandin D1 at the C-1 position and one chain of eicosanoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:1(11Z)/PGF1alpha)

{[(1S,6R,15S,16S,18R,19S,20R,21R,22R,23S,24R)-3,16,18,20,22,23,24-heptahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-{[(11Z)-icos-11-enoyloxy]methyl}-3,8-dioxo-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracosan-21-yl]oxy}phosphonic acid

C49H90O19P2 (1044.5551249999999)


PIP(20:1(11Z)/PGF1alpha) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:1(11Z)/PGF1alpha), in particular, consists of one chain of 11Z-eicosenoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(PGF1alpha/20:1(11Z))

{[(1S,6R,16S,17S,19R,20S,21R,22R,23R,24S,25R)-3,17,19,21,23,24,25-heptahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-6-[(11Z)-icos-11-enoyloxy]-3,9-dioxo-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacosan-22-yl]oxy}phosphonic acid

C49H90O19P2 (1044.5551249999999)


PIP(PGF1alpha/20:1(11Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(PGF1alpha/20:1(11Z)), in particular, consists of one chain of Prostaglandin F1alpha at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(22:3(10Z,13Z,16Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C52H86O17P2 (1044.5339966)


PIP(22:3(10Z,13Z,16Z)/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(22:3(10Z,13Z,16Z)/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(6E,8Z,11Z,14Z)+=O(5)/22:3(10Z,13Z,16Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C52H86O17P2 (1044.5339966)


PIP(20:4(6E,8Z,11Z,14Z)+=O(5)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(6E,8Z,11Z,14Z)+=O(5)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C52H86O17P2 (1044.5339966)


PIP(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(5Z,8Z,11Z,13E)+=O(15)/22:3(10Z,13Z,16Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C52H86O17P2 (1044.5339966)


PIP(20:4(5Z,8Z,11Z,13E)+=O(15)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(5Z,8Z,11Z,13E)+=O(15)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(22:3(10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C52H86O17P2 (1044.5339966)


PIP(22:3(10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(22:3(10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/22:3(10Z,13Z,16Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C52H86O17P2 (1044.5339966)


PIP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(22:3(10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C52H86O17P2 (1044.5339966)


PIP(22:3(10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(22:3(10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/22:3(10Z,13Z,16Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C52H86O17P2 (1044.5339966)


PIP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(22:3(10Z,13Z,16Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C52H86O17P2 (1044.5339966)


PIP(22:3(10Z,13Z,16Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(22:3(10Z,13Z,16Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/22:3(10Z,13Z,16Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C52H86O17P2 (1044.5339966)


PIP(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(22:3(10Z,13Z,16Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C52H86O17P2 (1044.5339966)


PIP(22:3(10Z,13Z,16Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(22:3(10Z,13Z,16Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/22:3(10Z,13Z,16Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C52H86O17P2 (1044.5339966)


PIP(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   
   
   
   
   

3-O-beta-D-apiofuranosyl-(1->3)-alpha-L-arabinopyranosyl-(1->3)-[beta-D-glucopyranosyl-(1->2)]-beta-D-glucopyranosyloleanolic acid

3-O-beta-D-apiofuranosyl-(1->3)-alpha-L-arabinopyranosyl-(1->3)-[beta-D-glucopyranosyl-(1->2)]-beta-D-glucopyranosyloleanolic acid

C52H84O21 (1044.5504814)


   
   

3-O-alpha-L-arabinopyranosylhederagenin 28-O-alpha-L-rhamnopyranosyl(1-->2)-beta-D-xylopyranosyl(1-->6)-beta-D-glucopyranosyl ester|loniceroside A

3-O-alpha-L-arabinopyranosylhederagenin 28-O-alpha-L-rhamnopyranosyl(1-->2)-beta-D-xylopyranosyl(1-->6)-beta-D-glucopyranosyl ester|loniceroside A

C52H84O21 (1044.5504814)


   
   
   

hederagenin 3-O-beta-D-glucopyranosyl-(1-4)-beta-D-xylopyranosyl-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-arabinopyranoside

hederagenin 3-O-beta-D-glucopyranosyl-(1-4)-beta-D-xylopyranosyl-(1-3)-alpha-L-rhamnopyranosyl-(1-2)-alpha-L-arabinopyranoside

C52H84O21 (1044.5504814)


   
   
   

decaisoside E|hederagenin 3-O-beta-D-xylopyranosyl-(1->3)-O-alpha-L-rhamnopyranosyl-(1->2)-O-alpha-L-arabinopyranoside 28-O-beta-D-glucopyranosyl ester

decaisoside E|hederagenin 3-O-beta-D-xylopyranosyl-(1->3)-O-alpha-L-rhamnopyranosyl-(1->2)-O-alpha-L-arabinopyranoside 28-O-beta-D-glucopyranosyl ester

C52H84O21 (1044.5504814)


   
   
   

3-O-beta-D-apiofuranosyl-(1->3)-beta-D-galactopyranosyl-(1->3)-[beta-D-glucopyranosyl-(1->2)]-alpha-L-arabinopyranosyloleanolic acid

3-O-beta-D-apiofuranosyl-(1->3)-beta-D-galactopyranosyl-(1->3)-[beta-D-glucopyranosyl-(1->2)]-alpha-L-arabinopyranosyloleanolic acid

C52H84O21 (1044.5504814)


   
   
   

3beta-O-(beta-D-xylopyranosyl-(1?2)-beta-D-glucopyranosyl-(1?4)-[beta-D-glucopyranosyl-(1?2)]-alpha-L-arabinopyranosyl)-13beta,28-epoxyolean-11-en-16alpha-ol

3beta-O-(beta-D-xylopyranosyl-(1?2)-beta-D-glucopyranosyl-(1?4)-[beta-D-glucopyranosyl-(1?2)]-alpha-L-arabinopyranosyl)-13beta,28-epoxyolean-11-en-16alpha-ol

C52H84O21 (1044.5504814)


   
   

3beta-O-(beta-D-xylopyranosyl-(1?2)-beta-D-glucopyranosyl-(1?4)-[beta-D-glucopyranosyl-(1?2)]-alpha-L-arabinopyranosyl)-oleana-11,13(18)-diene-16alpha,28-diol

3beta-O-(beta-D-xylopyranosyl-(1?2)-beta-D-glucopyranosyl-(1?4)-[beta-D-glucopyranosyl-(1?2)]-alpha-L-arabinopyranosyl)-oleana-11,13(18)-diene-16alpha,28-diol

C52H84O21 (1044.5504814)


   

3beta-O-{beta-D-xylopyranosyl-(1->3)-alpha-L-rhamnopyranosyl-(1->2)-[beta-D-glucopyranosyl-(1->4)]-alpha-L-arabinopyranosyl}hederagenin

3beta-O-{beta-D-xylopyranosyl-(1->3)-alpha-L-rhamnopyranosyl-(1->2)-[beta-D-glucopyranosyl-(1->4)]-alpha-L-arabinopyranosyl}hederagenin

C52H84O21 (1044.5504814)


   

vaccaric acid beta-D-glucopyranosyl-(1->3)-[beta-D-xylopyranosyl-(1->4)]-alpha-L-rhamnopyranosyl-(1->2)-beta-D-fucopyranosyl ester

vaccaric acid beta-D-glucopyranosyl-(1->3)-[beta-D-xylopyranosyl-(1->4)]-alpha-L-rhamnopyranosyl-(1->2)-beta-D-fucopyranosyl ester

C52H84O21 (1044.5504814)


   

3-O-alpha-L-rhamnopyranosyl(1->2)-alpha-L-arabinopyranosyl-hederagenin 28-O-beta-D-xylopyranosyl(1->6)-beta-D-glucopyranosyl ester

3-O-alpha-L-rhamnopyranosyl(1->2)-alpha-L-arabinopyranosyl-hederagenin 28-O-beta-D-xylopyranosyl(1->6)-beta-D-glucopyranosyl ester

C52H84O21 (1044.5504814)


   
   

oleanolic acid 3-O-beta-D-xylopyranosyl-(1->2)-alpha-L-arabinopyranosyl-28-O-beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside

oleanolic acid 3-O-beta-D-xylopyranosyl-(1->2)-alpha-L-arabinopyranosyl-28-O-beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside

C52H84O21 (1044.5504814)


   

3-O-{[beta-D-xylopyranosyl-(1->2)]-[beta-D-glucopyranosyl-(1->3)]-alpha-L-arabinopyranosyl}ursolic acid-28-O-[beta-D-glucopyranosyl] ester|araliasaponin VIII

3-O-{[beta-D-xylopyranosyl-(1->2)]-[beta-D-glucopyranosyl-(1->3)]-alpha-L-arabinopyranosyl}ursolic acid-28-O-[beta-D-glucopyranosyl] ester|araliasaponin VIII

C52H84O21 (1044.5504814)


   
   
   

jujubogenin 3-O-alpha-L-arabinopyranosyl-(1-2)-[3-O-(trans)-p-coumaroyl-beta-D-glucopyranosyl-(1-3)]-alpha-L-arabinopyranoside

jujubogenin 3-O-alpha-L-arabinopyranosyl-(1-2)-[3-O-(trans)-p-coumaroyl-beta-D-glucopyranosyl-(1-3)]-alpha-L-arabinopyranoside

C55H80O19 (1044.5293530000001)


   

3beta-[(O-alpha-L-arabinopyranosyl-(1->4)-O-beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranosyl)oxy]-2alpha-hydroxyolean-12-en-28-oic acid alpha-L-rhamnopyranosyl ester|alpha-L-rhamnopyranosyl 3beta-[alpha-L-arabinopyranosyl-(1->4)-beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranosyl]oxy-2alpha-hydroxyolean-12-en-28-oate|stryphnoside A

3beta-[(O-alpha-L-arabinopyranosyl-(1->4)-O-beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranosyl)oxy]-2alpha-hydroxyolean-12-en-28-oic acid alpha-L-rhamnopyranosyl ester|alpha-L-rhamnopyranosyl 3beta-[alpha-L-arabinopyranosyl-(1->4)-beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranosyl]oxy-2alpha-hydroxyolean-12-en-28-oate|stryphnoside A

C52H84O21 (1044.5504814)


   

3-O-alpha-L-rhamnopyranosyl(1->2)-alpha-L-arabinopyranosyl hederagenin 28-O-beta-D-xylopyranosyl(1->6)-beta-D-glucopyranosyl ester

3-O-alpha-L-rhamnopyranosyl(1->2)-alpha-L-arabinopyranosyl hederagenin 28-O-beta-D-xylopyranosyl(1->6)-beta-D-glucopyranosyl ester

C52H84O21 (1044.5504814)


   

Jujuboside B

2-[(4-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-5-hydroxy-2-{[16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C52H84O21 (1044.5504814)


Jujuboside B1 is found in fruits. Jujuboside B1 is isolated from seeds of Zizyphus jujuba (Chinese date). Isolated from seeds of Zizyphus jujuba (Chinese date). Jujuboside B1 is found in fruits. Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1]. Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1].

   

C52H84O21

NCGC00384728-01_C52H84O21_

C52H84O21 (1044.5504814)


   

[5-hydroxy-6-[6-[[14-hydroxy-10,13-dimethyl-17-[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyethyl]-1,2,3,4,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl] (E)-2-methylbut-2-enoate

[5-hydroxy-6-[6-[[14-hydroxy-10,13-dimethyl-17-[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyethyl]-1,2,3,4,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl] (E)-2-methylbut-2-enoate

C52H84O21 (1044.5504814)


   

[5-hydroxy-6-[6-[[14-hydroxy-10,13-dimethyl-17-[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyethyl]-1,2,3,4,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl] (E)-2-methylbut-2-enoate_major

[5-hydroxy-6-[6-[[14-hydroxy-10,13-dimethyl-17-[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyethyl]-1,2,3,4,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl] (E)-2-methylbut-2-enoate_major

C52H84O21 (1044.5504814)


   

[5-hydroxy-6-[6-[[14-hydroxy-10,13-dimethyl-17-[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyethyl]-1,2,3,4,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl] (E)-2-methylbut-2-enoate_65.5\\%

[5-hydroxy-6-[6-[[14-hydroxy-10,13-dimethyl-17-[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyethyl]-1,2,3,4,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl] (E)-2-methylbut-2-enoate_65.5\\%

C52H84O21 (1044.5504814)


   

[5-hydroxy-6-[6-[[14-hydroxy-10,13-dimethyl-17-[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyethyl]-1,2,3,4,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl] (E)-2-methylbut-2-enoate_73.0\\%

[5-hydroxy-6-[6-[[14-hydroxy-10,13-dimethyl-17-[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyethyl]-1,2,3,4,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl] (E)-2-methylbut-2-enoate_73.0\\%

C52H84O21 (1044.5504814)


   

[5-hydroxy-6-[6-[[14-hydroxy-10,13-dimethyl-17-[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyethyl]-1,2,3,4,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl] (E)-2-methylbut-2-enoate_96.7\\%

[5-hydroxy-6-[6-[[14-hydroxy-10,13-dimethyl-17-[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyethyl]-1,2,3,4,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl] (E)-2-methylbut-2-enoate_96.7\\%

C52H84O21 (1044.5504814)


   

[5-hydroxy-6-[6-[[14-hydroxy-10,13-dimethyl-17-[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyethyl]-1,2,3,4,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl] (E)-2-methylbut-2-enoate_92.6\\%

[5-hydroxy-6-[6-[[14-hydroxy-10,13-dimethyl-17-[1-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyethyl]-1,2,3,4,7,8,9,11,12,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-yl]oxy]-4-methoxy-2-methyloxan-3-yl]oxy-4-methoxy-2-methyloxan-3-yl] (E)-2-methylbut-2-enoate_92.6\\%

C52H84O21 (1044.5504814)


   

Pitheduloside F

10-({6-[({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)methyl]-4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl}oxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

Jujuboside B

2-[(4-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-5-hydroxy-2-{[16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0^{1,14}.0^{2,11}.0^{5,10}.0^{15,20}]tricosan-7-yl]oxy}oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C52H84O21 (1044.5504814)


Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1]. Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1].

   

5-hydroxy-6-((6-((14-hydroxy-10,13-dimethyl-17-(1-((3,4,5-trihydroxy-6-(((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)ethyl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-4-methoxy-2-methyltetrahydro-2H-pyran-3-yl)oxy)-4-methoxy-2-methyltetrahydro-2H-pyran-3-yl (E)-2-methylbut-2-enoate Chemical Formul

5-hydroxy-6-((6-((14-hydroxy-10,13-dimethyl-17-(1-((3,4,5-trihydroxy-6-(((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)ethyl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-4-methoxy-2-methyltetrahydro-2H-pyran-3-yl)oxy)-4-methoxy-2-methyltetrahydro-2H-pyran-3-yl (E)-2-methylbut-2-enoate Chemical Formul

C52H84O21 (1044.5504814)


   

Clethroidoside D

Clethroidoside D

C52H84O21 (1044.5504814)


A triterpenoid saponin that is (3beta)-3-hydroxy-13,28-epoxyoleanan-16-one attached to a tetrasaccharide residue at position 3 via a glycosidic linkage. Isolated from the aerial parts of Lysimachia clethroides, it exhibits antineoplastic activity.

   
   
   
   
   

PIP(22:3(10Z,13Z,16Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

PIP(22:3(10Z,13Z,16Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

C52H86O17P2 (1044.5339966)


   

PIP(20:4(6E,8Z,11Z,14Z)+=O(5)/22:3(10Z,13Z,16Z))

PIP(20:4(6E,8Z,11Z,14Z)+=O(5)/22:3(10Z,13Z,16Z))

C52H86O17P2 (1044.5339966)


   

PIP(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

PIP(22:3(10Z,13Z,16Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

C52H86O17P2 (1044.5339966)


   

PIP(20:4(5Z,8Z,11Z,13E)+=O(15)/22:3(10Z,13Z,16Z))

PIP(20:4(5Z,8Z,11Z,13E)+=O(15)/22:3(10Z,13Z,16Z))

C52H86O17P2 (1044.5339966)


   

PIP(22:3(10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PIP(22:3(10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C52H86O17P2 (1044.5339966)


   

PIP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/22:3(10Z,13Z,16Z))

PIP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/22:3(10Z,13Z,16Z))

C52H86O17P2 (1044.5339966)


   

PIP(22:3(10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PIP(22:3(10Z,13Z,16Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C52H86O17P2 (1044.5339966)


   

PIP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/22:3(10Z,13Z,16Z))

PIP(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/22:3(10Z,13Z,16Z))

C52H86O17P2 (1044.5339966)


   

PIP(22:3(10Z,13Z,16Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PIP(22:3(10Z,13Z,16Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C52H86O17P2 (1044.5339966)


   

PIP(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/22:3(10Z,13Z,16Z))

PIP(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/22:3(10Z,13Z,16Z))

C52H86O17P2 (1044.5339966)


   

PIP(22:3(10Z,13Z,16Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PIP(22:3(10Z,13Z,16Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C52H86O17P2 (1044.5339966)


   

PIP(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/22:3(10Z,13Z,16Z))

PIP(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/22:3(10Z,13Z,16Z))

C52H86O17P2 (1044.5339966)


   

Salzmannianoside B

Salzmannianoside B

C52H84O21 (1044.5504814)


A triterpenoid saponin that is the tetrasaccharide derivative of hederagenin. Isolated from Serjania salzmanniana, it exhibits antifungal and molluscicidal activities.

   

Jujuboside

Jujuboside B, >=98\\% (HPLC)

C52H84O21 (1044.5504814)


Jujuboside B is a triterpenoid. Jujuboside B is a natural product found in Ziziphus spina-christi, Ziziphus jujuba, and Hovenia dulcis with data available. Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1]. Jujuboside B is one of the major bioactive constituents isolated from Zizyphus jujuba. Jujuboside B can inhibit platelet aggregation[1].

   
   

(4ar,6ar,6bs,8ar,10r,12ar,12br,14br)-10-{[(2r,3r,4s,5s)-4-{[(2r,3r,4s,5r,6s)-4-{[(2s,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-hydroxy-3-{[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4ar,6ar,6bs,8ar,10r,12ar,12br,14br)-10-{[(2r,3r,4s,5s)-4-{[(2r,3r,4s,5r,6s)-4-{[(2s,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-hydroxy-3-{[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

(2s,4s,5s)-2-{[(3s,4s,5s)-3-{[(3s,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-2-{[(2r,7s,10r,16s)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-4-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

(2s,4s,5s)-2-{[(3s,4s,5s)-3-{[(3s,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-2-{[(2r,7s,10r,16s)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-4-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C55H80O19 (1044.5293530000001)


   

(2s,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl (4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl (4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2r,3r,4r,5r,6s)-6-{[(2r,3r,4r,6r)-6-{[(1s,3as,3br,7s,9ar,9bs,11ar)-3a-hydroxy-9a,11a-dimethyl-1-[(1s)-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}ethyl]-1h,2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl (2e)-2-methylbut-2-enoate

(2r,3r,4r,5r,6s)-6-{[(2r,3r,4r,6r)-6-{[(1s,3as,3br,7s,9ar,9bs,11ar)-3a-hydroxy-9a,11a-dimethyl-1-[(1s)-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}ethyl]-1h,2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl (2e)-2-methylbut-2-enoate

C52H84O21 (1044.5504814)


   

2-{[2-({2-[(4,5-dihydroxy-2-{[(1s,2r,7s,10r,11r,14r,15s,16s,20s)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}-6-methyloxan-3-yl)oxy]-4,5-dihydroxyoxan-3-yl}oxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}oxane-3,4,5-triol

2-{[2-({2-[(4,5-dihydroxy-2-{[(1s,2r,7s,10r,11r,14r,15s,16s,20s)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}-6-methyloxan-3-yl)oxy]-4,5-dihydroxyoxan-3-yl}oxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}oxane-3,4,5-triol

C52H84O21 (1044.5504814)


   

10-{[5-({5-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-3,4-dihydroxy-6-methyloxan-2-yl}oxy)-3,4-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-{[5-({5-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-3,4-dihydroxy-6-methyloxan-2-yl}oxy)-3,4-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

(3ar,3bs,7s,9ar,9br,11r,11as)-1-acetyl-3a,3b-dihydroxy-7-{[(2r,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

(3ar,3bs,7s,9ar,9br,11r,11as)-1-acetyl-3a,3b-dihydroxy-7-{[(2r,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

C56H84O18 (1044.5657364)


   

3,4,5-trihydroxy-6-methyloxan-2-yl 11-hydroxy-10-[(4-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-methyloxan-2-yl 11-hydroxy-10-[(4-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-{[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-{[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl (4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-11-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl (4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-11-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,2r,4as,6as,6br,8ar,10r,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,2r,4as,6as,6br,8ar,10r,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

C52H84O21 (1044.5504814)


   

10-({4-[(4-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxyoxan-2-yl)oxy]-5-hydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl}oxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({4-[(4-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxyoxan-2-yl)oxy]-5-hydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl}oxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4-{[(2s,3r,4s,5s,6r)-4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4-{[(2s,3r,4s,5s,6r)-4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5r,6r)-2-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-2-{[(1s,2r,5r,7s,10r,11r,14r,15s,16s,18s,20s)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-4-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

(2s,3r,4s,5r,6r)-2-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-2-{[(1s,2r,5r,7s,10r,11r,14r,15s,16s,18s,20s)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-4-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C55H80O19 (1044.5293530000001)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2r,3s,4r,5r)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2r,3s,4r,5r)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl (4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-11-hydroxy-10-{[(2s,3r,4s,5r)-4-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl (4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-11-hydroxy-10-{[(2s,3r,4s,5r)-4-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2r,3s,4s,5s)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl (4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2r,3s,4s,5s)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl (4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(4ar,6as,6br,8ar,9r,10r,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4ar,6as,6br,8ar,9r,10r,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-[(5-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-[(5-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(1r,3ar,3bs,7s,9ar,9br,11r,11as)-1-acetyl-3a,3b-dihydroxy-7-{[(2r,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-{[(2s,4r,5r,6r)-5-{[(2s,4s,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

(1r,3ar,3bs,7s,9ar,9br,11r,11as)-1-acetyl-3a,3b-dihydroxy-7-{[(2r,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-{[(2s,4r,5r,6r)-5-{[(2s,4s,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

C56H84O18 (1044.5657364)


   

4,5-dihydroxy-3-[(3-hydroxy-6-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-6-methyloxan-2-yl 9,10-dihydroxy-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

4,5-dihydroxy-3-[(3-hydroxy-6-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-6-methyloxan-2-yl 9,10-dihydroxy-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-[(5-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-[(5-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(4ar,6ar,6br,8as,10r,12as,12br,14br)-10-{[(2r,3s,4s,5r,6r)-4-{[(2s,3s,4s,5s)-4-{[(2r,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxyoxan-2-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4ar,6ar,6br,8as,10r,12as,12br,14br)-10-{[(2r,3s,4s,5r,6r)-4-{[(2s,3s,4s,5s)-4-{[(2r,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxyoxan-2-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-3,5-dihydroxy-6-methyl-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-6-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-6-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

(1s,3ar,3br,5as,7s,9as,9bs,11ar)-7-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(1r,2r,3r,4s,5r)-2,3,4-trihydroxy-5-methylcyclohexyl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s)-2-hydroxy-6-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl]-3a,3b,6,6-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

(1s,3ar,3br,5as,7s,9as,9bs,11ar)-7-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(1r,2r,3r,4s,5r)-2,3,4-trihydroxy-5-methylcyclohexyl]oxy}-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2s)-2-hydroxy-6-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl]-3a,3b,6,6-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C53H88O20 (1044.5868648)


   

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-6-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6r)-6-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

2-[(3-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-2-{[16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-4-yl)oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl 3-(4-hydroxyphenyl)prop-2-enoate

2-[(3-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-2-{[16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-4-yl)oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl 3-(4-hydroxyphenyl)prop-2-enoate

C55H80O19 (1044.5293530000001)


   

(1r,3ar,3bs,7s,9ar,9br,11r,11as)-1-acetyl-3a,3b-dihydroxy-7-{[(2r,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-{[(2s,4r,5r,6r)-5-{[(2s,4r,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

(1r,3ar,3bs,7s,9ar,9br,11r,11as)-1-acetyl-3a,3b-dihydroxy-7-{[(2r,4s,5r,6r)-5-{[(2s,4s,5r,6r)-5-{[(2s,4r,5r,6r)-5-{[(2s,4r,5s,6s)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-9a,11a-dimethyl-1h,2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

C56H84O18 (1044.5657364)


   

6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 2,2,6a,6b,9,9,12a-heptamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 2,2,6a,6b,9,9,12a-heptamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(4as,6br,9s,10s,12ar)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6br,9s,10s,12ar)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r,5r)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5r)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5r)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

10-{[3-({4-[(3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-3,5-dihydroxy-6-methyloxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-{[3-({4-[(3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-3,5-dihydroxy-6-methyloxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl 9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl 9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

2-{[(3s,6e,8r)-8-[(2s,4s,6s,8r,10s)-8-[(1r,2s,4r,5r,6s,7s,9e)-5-(acetyloxy)-11-methoxy-2,6,10-trimethyl-1,4-bis[(3-methylbutanoyl)oxy]-11-oxo-7-(propanoyloxy)undec-9-en-1-yl]-4,10-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-8-hydroxy-3,7-dimethyloct-6-enoyl]oxy}ethanesulfonic acid

2-{[(3s,6e,8r)-8-[(2s,4s,6s,8r,10s)-8-[(1r,2s,4r,5r,6s,7s,9e)-5-(acetyloxy)-11-methoxy-2,6,10-trimethyl-1,4-bis[(3-methylbutanoyl)oxy]-11-oxo-7-(propanoyloxy)undec-9-en-1-yl]-4,10-dimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]-8-hydroxy-3,7-dimethyloct-6-enoyl]oxy}ethanesulfonic acid

C53H88O18S (1044.5691068)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-[(5-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-[(5-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

10-{[3-({4-[(3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-3,5-dihydroxy-6-methyloxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-9-methoxy-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-{[3-({4-[(3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-3,5-dihydroxy-6-methyloxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-9-methoxy-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

2-[(3-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-2-{[16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-4-yl)oxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl 3-(4-hydroxyphenyl)prop-2-enoate

2-[(3-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-2-{[16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-4-yl)oxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl 3-(4-hydroxyphenyl)prop-2-enoate

C55H80O19 (1044.5293530000001)


   

3,4,5-trihydroxy-6-methyloxan-2-yl 10-{[3-({3,4-dihydroxy-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-11-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-methyloxan-2-yl 10-{[3-({3,4-dihydroxy-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-11-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-4-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-{[(1s,2r,5r,7s,10r,11r,14r,15s,16s,18r,20s)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2s,3r,4s,5s)-4-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-{[(1s,2r,5r,7s,10r,11r,14r,15s,16s,18r,20s)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4as,6as,6br,8ar,10s,12ar,12br,14bs)-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4as,6as,6br,8ar,10s,12ar,12br,14bs)-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-2-{[(1s,2r,5r,7s,10r,11r,14r,15s,16s,18r,20s)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-4-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5-hydroxy-2-{[(1s,2r,5r,7s,10r,11r,14r,15s,16s,18r,20s)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-4-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C55H80O19 (1044.5293530000001)


   

(2r,3r,4r,5r,6s)-6-{[(2r,3r,4r,6r)-6-{[(1s,3as,3br,7s,9ar,9bs,11ar)-3a-hydroxy-9a,11a-dimethyl-1-[(1s)-1-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}ethyl]-1h,2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl (2e)-2-methylbut-2-enoate

(2r,3r,4r,5r,6s)-6-{[(2r,3r,4r,6r)-6-{[(1s,3as,3br,7s,9ar,9bs,11ar)-3a-hydroxy-9a,11a-dimethyl-1-[(1s)-1-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}ethyl]-1h,2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl]oxy}-5-hydroxy-4-methoxy-2-methyloxan-3-yl (2e)-2-methylbut-2-enoate

C52H84O21 (1044.5504814)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4r,5r)-5-{[(2s,3r,4s,5r,6s)-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-3,4-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4r,5r)-5-{[(2s,3r,4s,5r,6s)-5-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-3,4-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl 5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl 5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

6-[(6-{[3a-hydroxy-9a,11a-dimethyl-1-(1-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}ethyl)-1h,2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl)oxy]-5-hydroxy-4-methoxy-2-methyloxan-3-yl 2-methylbut-2-enoate

6-[(6-{[3a-hydroxy-9a,11a-dimethyl-1-(1-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}ethyl)-1h,2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-methoxy-2-methyloxan-3-yl)oxy]-5-hydroxy-4-methoxy-2-methyloxan-3-yl 2-methylbut-2-enoate

C52H84O21 (1044.5504814)


   

(4ar,6as,6br,8as,9r,10r,12ar,12br,14br)-10-{[(2r,3s,4r,5r)-3-{[(2r,3s,4s,5r,6r)-4-{[(2r,3s,4r,5s)-3,4-dihydroxy-5-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-methoxy-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4ar,6as,6br,8as,9r,10r,12ar,12br,14br)-10-{[(2r,3s,4r,5r)-3-{[(2r,3s,4s,5r,6r)-4-{[(2r,3s,4r,5s)-3,4-dihydroxy-5-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-methoxy-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5r,6r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6s)-3-hydroxy-6-methyl-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl (4as,6as,6br,8ar,9s,10s,12ar,12br,14bs)-9,10-dihydroxy-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5r,6r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6s)-3-hydroxy-6-methyl-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-methyloxan-2-yl (4as,6as,6br,8ar,9s,10s,12ar,12br,14bs)-9,10-dihydroxy-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

7-({5-hydroxy-3-[(2,3,4-trihydroxy-5-methylcyclohexyl)oxy]-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-1-(2-hydroxy-6-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl)-3a,3b,6,6-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

7-({5-hydroxy-3-[(2,3,4-trihydroxy-5-methylcyclohexyl)oxy]-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-1-(2-hydroxy-6-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hept-5-en-2-yl)-3a,3b,6,6-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C53H88O20 (1044.5868648)


   

3-[1,4,7,10,14,17,20-heptahydroxy-16,22-bis(c-hydroxycarbonimidoylmethyl)-9-(1-hydroxyethyl)-6-(hydroxymethyl)-19-[(4-hydroxyphenyl)methyl]-12-(9-methylundecyl)-23-oxo-3h,6h,9h,12h,13h,16h,19h,22h,25h,26h,27h,27ah-pyrrolo[1,2-j]1,4,7,10,13,16,19,22-octaazacyclopentacosan-3-yl]propanoic acid

3-[1,4,7,10,14,17,20-heptahydroxy-16,22-bis(c-hydroxycarbonimidoylmethyl)-9-(1-hydroxyethyl)-6-(hydroxymethyl)-19-[(4-hydroxyphenyl)methyl]-12-(9-methylundecyl)-23-oxo-3h,6h,9h,12h,13h,16h,19h,22h,25h,26h,27h,27ah-pyrrolo[1,2-j]1,4,7,10,13,16,19,22-octaazacyclopentacosan-3-yl]propanoic acid

C49H76N10O15 (1044.5491346000001)


   

(1r,3as,5as,7s,9as,11ar)-7-{[(2s,3r,4s,5s)-4-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6,6,9a,11a-tetramethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

(1r,3as,5as,7s,9as,11ar)-7-{[(2s,3r,4s,5s)-4-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6,6,9a,11a-tetramethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

C52H84O21 (1044.5504814)


   

1-acetyl-3a,3b-dihydroxy-7-[(5-{[5-({5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl)oxy]-9a,11a-dimethyl-1h,2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

1-acetyl-3a,3b-dihydroxy-7-[(5-{[5-({5-[(5-hydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-4-methoxy-6-methyloxan-2-yl}oxy)-4-methoxy-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl)oxy]-9a,11a-dimethyl-1h,2h,3h,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-11-yl benzoate

C56H84O18 (1044.5657364)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

7-({4-[(3,5-dihydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-5-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl}oxy)-6,6,9a,11a-tetramethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

7-({4-[(3,5-dihydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-5-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl}oxy)-6,6,9a,11a-tetramethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

C52H84O21 (1044.5504814)


   

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5r,6r)-4-{[(2s,3r,4s,5s)-4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxyoxan-2-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5r,6r)-4-{[(2s,3r,4s,5s)-4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxyoxan-2-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

10-({4-[(4-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-5-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl}oxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({4-[(4-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-5-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl}oxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,10s,12ar,12br,14br)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl 10-{[4-hydroxy-5-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxolan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl 10-{[4-hydroxy-5-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxolan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,10r,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,10r,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl 5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl 5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s)-4-hydroxy-5-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxolan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s)-4-hydroxy-5-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxolan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

C52H84O21 (1044.5504814)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-{[3-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-{[3-({3,5-dihydroxy-6-methyl-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5r)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4s,5r)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C52H84O21 (1044.5504814)


   

4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl 1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl 1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl (4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl (4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

C52H84O21 (1044.5504814)


   

3-[(3s,6r,9s,16s,19r,22r,27as)-12-dodecyl-1,4,7,10,14,17,20-heptahydroxy-16,22-bis(c-hydroxycarbonimidoylmethyl)-9-[(1r)-1-hydroxyethyl]-6-(hydroxymethyl)-19-[(4-hydroxyphenyl)methyl]-23-oxo-3h,6h,9h,12h,13h,16h,19h,22h,25h,26h,27h,27ah-pyrrolo[1,2-j]1,4,7,10,13,16,19,22-octaazacyclopentacosan-3-yl]propanoic acid

3-[(3s,6r,9s,16s,19r,22r,27as)-12-dodecyl-1,4,7,10,14,17,20-heptahydroxy-16,22-bis(c-hydroxycarbonimidoylmethyl)-9-[(1r)-1-hydroxyethyl]-6-(hydroxymethyl)-19-[(4-hydroxyphenyl)methyl]-23-oxo-3h,6h,9h,12h,13h,16h,19h,22h,25h,26h,27h,27ah-pyrrolo[1,2-j]1,4,7,10,13,16,19,22-octaazacyclopentacosan-3-yl]propanoic acid

C49H76N10O15 (1044.5491346000001)


   

(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl (4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl (4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O21 (1044.5504814)