Classification Term: 3588

Alkanes (ontology term: CHEMONTID:0002500)

Acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms." [ISBN:0967855098]

found 35 associated metabolites at sub_class metabolite taxonomy ontology rank level.

Ancestor: Saturated hydrocarbons

Child Taxonomies: Branched alkanes

Nonacosane

Nonacosane; Celidoniol, deoxy- (7CI); n-Nonacosane

C29H60 (408.469476)


Nonacosane, also known as CH3-[CH2]27-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Nonacosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane is a straight-chain hydrocarbon with a molecular formula of C29H60. Nonacosane has been identified within several essential oils. Nonacosane has been detected, but not quantified, in several different foods, such as peachs, ginkgo nuts, cauliflowers, arabica coffee, and lambsquarters. This could make nonacosane a potential biomarker for the consumption of these foods. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito). It can also be prepared synthetically. It has 1,590,507,121 constitutional isomers. Nonacosane, also known as ch3-[ch2]27-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, nonacosane is considered to be a hydrocarbon lipid molecule. Nonacosane can be found in a number of food items such as garden tomato (variety), papaya, brussel sprouts, and wild carrot, which makes nonacosane a potential biomarker for the consumption of these food products. Nonacosane occurs naturally and has been reported to be a component of a pheromone of Orgyia leucostigma, and evidence suggests it plays a role in the chemical communication of several insects, including the female Anopheles stephensi (a mosquito) . Nonacosane is a straight-chain alkane comprising of 29 carbon atoms. It has a role as a plant metabolite and a volatile oil component. Nonacosane is a natural product found in Euphorbia larica, Quercus salicina, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). A straight-chain alkane comprising of 29 carbon atoms. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1]. Nonacosane, isolated from Baphia massaiensis, exhibits weak activities against E. coli, B. subtilis, P. aeruginosa and S. aureus[1].

   

Heptadecane

CH3-[CH2]15-CH3

C17H36 (240.2816856)


Heptadecane, also known as CH3-[CH2]15-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Heptadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an organic compound, an alkane hydrocarbon with the chemical formula C17H36. The most compact and branched isomer would be tetra-tert-butylmethane, but its existence is believed to be impossible due to steric hindrance. The name may refer to any of 24894 theoretically possible structural isomers, or to a mixture thereof. Heptadecane is an alkane tasting compound. heptadecane has been detected, but not quantified, in several different foods, such as lemon balms, coconuts, orange bell peppers, allspices, and pepper (c. annuum). This could make heptadecane a potential biomarker for the consumption of these foods. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. Indeed, it is believed to be the smallest "impossible" alkane. Heptadecane, also known as ch3-[ch2]15-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an alkane tasting compound and can be found in a number of food items such as papaya, orange bell pepper, pepper (spice), and red bell pepper, which makes heptadecane a potential biomarker for the consumption of these food products. Heptadecane can be found primarily in saliva. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes .

   

N-Dodecane

CH3-[CH2]10-CH3

C12H26 (170.2034396)


N-Dodecane is found in black walnut. Dodecane is a liquid alkane hydrocarbon with the chemical formula CH3(CH2)10CH3. It is an oily liquid of the paraffin series and has 355 isomers. (Wikipedia). Dodecane is a volatile organic compound found in feces of patients with Clostridium difficile infection, and considered as a potential fecal biomarker of Clostridium difficile infection (PMID: 30986230). Dodecane is a liquid alkane hydrocarbon with the chemical formula CH3(CH2)10CH3. It is an oily liquid of the paraffin series and has 355 isomers. N-Dodecane is found in papaya, black walnut, and garden tomato (variety). D009676 - Noxae > D002273 - Carcinogens

   

Tridecane

InChI=1/C13H28/c1-3-5-7-9-11-13-12-10-8-6-4-2/h3-13H2,1-2H

C13H28 (184.2190888)


Tridecane appears as an oily straw yellow clear liquid with a hydrocarbon odor. Flash point 190-196 °F. Specific gravity 0.76. Boiling point 456 °F. Repeated or prolonged skin contact may irritate or redden skin, progressing to dermatitis. Exposure to high concentrations of vapor may result in headache and stupor. Tridecane is a straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. It has a role as a plant metabolite and a volatile oil component. Tridecane is a natural product found in Dryopteris assimilis, Thyanta perditor, and other organisms with data available. Tridecane is an alkane hydrocarbon with the chemical formula CH3(CH2)11CH3. Tridecane is found in allspice and it is also isolated from lime oil. It is a light, combustible colourless liquid that is used in the manufacture of paraffin products, the paper processing industry, in jet fuel research and in the rubber industry; furthermore, tridecane is used as a solvent and distillation chaser. n-tridecane is also one of the major chemicals secreted by some insects as a defense against predators. Tridecane has 802 constitutional isomers A straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. Isolated from lime oil Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2]. Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2].

   

Octane

CH3-[CH2]6-CH3

C8H18 (114.1408428)


Octane, also known as N-oktanis a hydrocarbon and an alkane with the chemical formula C8H18, and the condensed structural formula CH3(CH2)6CH3. Octane has many structural isomers that differ by the amount and location of branching in the carbon chain. One of these isomers, 2,2,4-trimethylpentane (commonly called iso-octane) is used as one of the standard values in the octane rating scale. Octane belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, octane is considered to be a hydrocarbon lipid molecule. Octane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Octane is an alkane and gasoline tasting compound. Outside of the human body, octane has been detected, but not quantified in several different foods, such as pepper (Capsicum annuum), celery stalks, cauliflowers, alcoholic beverages, and corns. One of the isomers, 2,2,4-trimethylpentane or isooctane, is of major importance, as it has been selected as the 100 point on the octane rating scale, with n-heptane as the zero point. Octane is an alkane with the chemical formula C8H18. Octane is a potentially toxic compound. Treatment is mainly symptomatic and supportive. It has 18 isomers. Octane ratings are ratings used to represent the anti-knock performance of petroleum-based fuels (octane is less likely to prematurely combust under pressure than heptane), given as the percentage of 2,2,4-trimethylpentane in an 2,2,4-trimethylpentane / n-heptane mixture that would have the same performance. Found in hop oil

   

Methane

Methane in gaseus STate

CH4 (16.0312984)


Methane (CH4), is a gas produced by a group of colonic anaerobes, absorbed from the colon and excreted in expired air. As a result, breath CH4 excretion can be used as an indicator of the in situ activity of the methanogenic flora. All CH4 produced in human beings is a metabolic product of intestinal bacteria, and about 50\\% of CH4 produced in the gut is absorbed and excreted in expired air. Because there appears to be no catabolism of this gas by other colonic organisms or host cells, breath CH4 measurements provide a rapid, simple means of semi quantitatively assessing the ongoing in situ metabolism of the methanogenic flora. It could seem likely that the intracolonic activity of a variety of bacteria similarly might be assessed quantitatively via analysis of expired air. However, the application of this methodology has been confounded by the rapid catabolism of many volatile bacterial products by other bacteria or human tissue. A striking aspect of the studies of breath CH4 measurements is the enormous individual variations in the excretion of this gas. Virtually all children under 5 years of age and 66\\% of the adult population do not exhale appreciable quantities of CH4. The remaining 34\\% of the adult population has appreciable breath methane concentrations of up to 80 ppm (mean, 15.2 ppm; median, 11.8 ppm). On this basis the population can be divided into CH4 producers or nonproducers, although a more accurate term would be to define subjects as being low or high CH4 producers. The primary methanogen present in the human colon, Methanobrevibacter smithii, produces methane via a reaction that relies entirely on H2 produced by other organisms to reduce CO2 to CH4. Thus, breath CH4 concentrations might be expected to mirror breath H2 concentrations; however, the high levels of CH4 observed in the fasting state may result from H2 derived from endogenous rather than dietary substrates. A diverse assortment of conditions has been associated with a high prevalence of methane producers including diverticulosis, cystic fibrosis, high fasting serum cholesterol levels, encopresis in children, and aorto-iliac vascular disease, whereas obesity (measured as skin-fold thickness) was related inversely to methane production. The challenge that remains is to determine to what extent methanogens actively influence body physiology vs. simply serve as passive indicators of colonic function. (PMID: 16469670, Clinical Gastroenterology and Hepatology Volume 4, Issue 2, February 2006, Pages 123-129). Methane can be found in Desulfovibrio, Methanobacterium, Methanobrevibacter, Methanococcus, Methanocorpusculum, Methanoculleus, Methanoflorens, Methanofollis, Methanogenium, Methanomicrobium, Methanopyrus, Methanoregula, Methanosaeta, Methanosarcina, Methanosphaera, Methanospirillium, Methanothermobacter (Wikipedia). Methane (CH4), is a gas produced by a group of colonic anaerobes, absorbed from the colon and excreted in expired air. As a result, breath CH4 excretion can be used as an indicator of the in situ activity of the methanogenic flora. All CH4 produced in human beings is a metabolic product of intestinal bacteria, and about 50\\% of CH4 produced in the gut is absorbed and excreted in expired air. Because there appears to be no catabolism of this gas by other colonic organisms or host cells, breath CH4 measurements provide a rapid, simple means of semi quantitatively assessing the ongoing in situ metabolism of the methanogenic flora. It could seem likely that the intracolonic activity of a variety of bacteria similarly might be assessed quantitatively via analysis of expired air. However, the application of this methodology has been confounded by the rapid catabolism of many volatile bacterial products by other bacteria or human tissue. A striking aspect of the studies of breath CH4 measurements is the enormous individual variations in the excretion of this gas. Virtually all children under 5 years of age and 66\\% of the adult population do not exhale appreciable quantities of CH4. The remaining 34\\% of the adult population has appreciable breath methane concentrations of up to 80 ppm (mean, 15.2 ppm; median, 11.8 ppm). On this basis the population can be divided into CH4 producers or nonproducers, although a more accurate term would be to define subjects as being low or high CH4 producers. The primary methanogen present in the human colon, Methanobrevibacter smithii, produces methane via a reaction that relies entirely on H2 produced by other organisms to reduce CO2 to CH4. Thus, breath CH4 concentrations might be expected to mirror breath H2 concentrations; however, the high levels of CH4 observed in the fasting state may result from H2 derived from endogenous rather than dietary substrates. A diverse assortment of conditions has been associated with a high prevalence of methane producers including diverticulosis, cystic fibrosis, high fasting serum cholesterol levels, encopresis in children, and aorto-iliac vascular disease, whereas obesity (measured as skin-fold thickness) was related inversely to methane production. The challenge that remains is to determine to what extent methanogens actively influence body physiology vs. simply serve as passive indicators of colonic function. (PMID: 16469670, Clinical Gastroenterology and Hepatology Volume 4, Issue 2, February 2006, Pages 123-129) [HMDB]

   

Hentriacontane

N-Hentriacontane

C31H64 (436.5007744)


Hentriacontane is found in black elderberry. Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers.

   

Pentadecane

CH3-[CH2]13-CH3

C15H32 (212.2503872)


Pentadecane, also known as ch3-[ch2]13-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, pentadecane is considered to be a hydrocarbon lipid molecule. Pentadecane is an alkane and waxy tasting compound and can be found in a number of food items such as dill, papaya, yellow bell pepper, and pepper (c. annuum), which makes pentadecane a potential biomarker for the consumption of these food products. Pentadecane can be found primarily in saliva. Pentadecane is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pentadecane is an alkane hydrocarbon with the chemical formula C15H32 . Pentadecane belongs to the family of Acyclic Alkanes. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2

   

Tritriacontane

N-tritriacontane

C33H68 (464.5320728)


Tritriacontane is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, tritriacontane is considered to be a hydrocarbon lipid molecule. Tritriacontane can be found in cardamom, garden tomato (variety), and papaya, which makes tritriacontane a potential biomarker for the consumption of these food products. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Tritriacontane, also known as CH3-[CH2]31-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and consist entirely of hydrogen atoms and saturated carbon atoms. Thus, tritriacontane is a hydrocarbon lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. Tritriacontane has been detected in cardamoms, garden tomato (var.), and papaya. This could make tritriacontane a potential biomarker for the consumption of these foods. Tritriacontane is also found in Medicago arabica (PMID: 17793563).

   

Hexane

N-Hexane, 3-(13)C-labeled CPD

C6H14 (86.1095444)


Hexane, also known as hexan or CH3-[CH2]4-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, hexane is considered to be a hydrocarbon lipid molecule. Hexane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hexane is an gasoline tasting compound. Hexane can be found, on average, in the highest concentration within kohlrabis. Hexane has also been detected, but not quantified, in several different foods, such as pomes, nuts, fruits, mushrooms, and corns. Exposure to hexane may also damage the lungs and reproductive system. Hexane is a potentially toxic compound. It causes degeneration of the peripheral nervous system (and eventually the central nervous system), starting with damage to the nerve axons. The initial reaction is oxidation by cytochrome P-450 isozymes to hexanols, predominantly 2-hexanol. Inhalation of high concentrations produces first a state of mild euphoria, followed by somnolence with headaches and nausea. 2,5-Hexanedione also reacts with lysine side-chain amino groups in axonal cytoskeletal proteins to form pyrroles. Continued exposure may lead to paralysis of the arms and legs. Extraction solvent used in food production Present in volatile fractions of various plant subspecies e.g. apples, orange juice, guava fruit, roasted filberts, porcini (Boletus edulis), shiitake (Lentinus edodes), heated sweet potato and sageand is also present in scallops. Hexane is found in many foods, some of which are citrus, pomes, mushrooms, and herbs and spices.

   

Tricosane

CH3-[CH2]21-CH3

C23H48 (324.37558079999997)


N-tricosane, also known as ch3-[ch2]21-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, N-tricosane is considered to be a hydrocarbon lipid molecule. N-tricosane is an alkane and waxy tasting compound and can be found in a number of food items such as kohlrabi, papaya, coconut, and ginkgo nuts, which makes N-tricosane a potential biomarker for the consumption of these food products. N-tricosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Tricosane belongs to the class of organic compounds known as acyclic alkanes. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2.

   

Propane

Propane Residual Solvent Standard

C3H8 (44.0625968)


Propane, also known as CH3-CH2-CH3 or E944, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Propane is produced as a by-product of two other processes, natural gas processing and petroleum refining. Isotopic evidence suggests that some amounts of propane can be produced by microbial communities in the deep ocean floor (PMID:16990430).

   

Docosane

InChI=1/C22H46/c1-3-5-7-9-11-13-15-17-19-21-22-20-18-16-14-12-10-8-6-4-2/h3-22H2,1-2H

C22H46 (310.3599316)


N-docosane, also known as ch3-[ch2]20-ch3 or dokosan, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, N-docosane is considered to be a hydrocarbon lipid molecule. N-docosane is an alkane and waxy tasting compound and can be found in a number of food items such as lemon balm, linden, allspice, and sunflower, which makes N-docosane a potential biomarker for the consumption of these food products. N-docosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Docosane, also known as CH3-[CH2]20-CH3 or dokosan, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Docosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, docosane is considered to be a hydrocarbon lipid molecule. Docosane is an alkane and waxy tasting compound. Docosane is found, on average, in the highest concentration within lemon balms. Docosane has also been detected, but not quantified, in several different foods, such as allspices, lindens, papaya, and sunflowers. This could make docosane a potential biomarker for the consumption of these foods. A straight-chain alkane with 22 carbon atoms. N-docosane is a solid. Insoluble in water. Used in organic synthesis, calibration, and temperature sensing equipment. Docosane is a straight-chain alkane with 22 carbon atoms. It has a role as a plant metabolite. Docosane is a natural product found in Lonicera japonica, Erucaria microcarpa, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). A straight-chain alkane with 22 carbon atoms. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2]. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2].

   

Heneicosane

(S)-(-)-2,2-Bis(diphenylphosphino)-5,5,6,6,7,7,8,8-octahydro-1,1-binaphthyl (R)-H8-BINAP

C21H44 (296.3442824)


Heneicosane, also known as CH3-[CH2]19-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heneicosane is considered to be a hydrocarbon lipid molecule. Heneicosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heneicosane is an alkane and waxy tasting compound. Heneicosane is found, on average, in the highest concentration within a few different foods, such as black elderberries, common oregano, and lemon balms. Heneicosane has also been detected, but not quantified, in several different foods, such as sunflowers, kohlrabis, orange bell peppers, lindens, and pepper (c. annuum). This could make heneicosane a potential biomarker for the consumption of these foods. An alkane that has 21 carbons and a straight-chain structure. Heneicosane, also known as ch3-[ch2]19-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heneicosane is considered to be a hydrocarbon lipid molecule. Heneicosane is an alkane and waxy tasting compound and can be found in a number of food items such as orange bell pepper, yellow bell pepper, lemon balm, and pepper (c. annuum), which makes heneicosane a potential biomarker for the consumption of these food products. Heneicosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Crystals. (NTP, 1992) Henicosane is an alkane that has 21 carbons and a straight-chain structure. It has been isolated from plants like Periploca laevigata and Carthamus tinctorius. It has a role as a pheromone, a plant metabolite and a volatile oil component. Heneicosane is a natural product found in Erucaria microcarpa, Microcystis aeruginosa, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). An alkane that has 21 carbons and a straight-chain structure. It has been isolated from plants like Periploca laevigata and Carthamus tinctorius. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3]. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3].

   

N-Decane

CH3-[CH2]8-CH3

C10H22 (142.1721412)


N-Decane, also known as CH3-[CH2]8-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. N-Decane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, N-decane is considered to be a hydrocarbon lipid molecule. A straight-chain alkane with 10 carbon atoms. N-Decane is an alkane tasting compound. N-Decane is found, on average, in the highest concentration within common oregano and safflowers. N-Decane has also been detected, but not quantified, in a few different foods, such as corns, sweet bay, and sweet cherries. Decane is an alkane hydrocarbon with the chemical formula CH3(CH2)8CH3. 75 isomers of decane exist, all of which are flammable liquids. N-Decane is found in safflower, sweet bay, and common oregano.

   

Tetradecane

CH3-[CH2]12-CH3

C14H30 (198.234738)


Tetradecane, also known as CH3-[CH2]12-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Tetradecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, tetradecane is considered to be a hydrocarbon lipid molecule. Tetradecane is a mild, alkane, and waxy tasting compound. Tetradecane is found, on average, in the highest concentration within black walnuts. Tetradecane has also been detected, but not quantified, in several different foods, such as lemon balms, common buckwheats, cucumbers, allspices, and green bell peppers. This could make tetradecane a potential biomarker for the consumption of these foods. Tetradecane, with regard to humans, has been found to be associated with several diseases such as crohns disease, ulcerative colitis, nonalcoholic fatty liver disease, and asthma; tetradecane has also been linked to the inborn metabolic disorder celiac disease. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2. TETRADECANE, also known as N-tetradecane or ch3-[ch2]12-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, tetradecane is considered to be a hydrocarbon lipid molecule. TETRADECANE is a mild, alkane, and waxy tasting compound and can be found in a number of food items such as sweet bay, summer savory, green bell pepper, and lemon balm, which makes tetradecane a potential biomarker for the consumption of these food products. Tetradecane can be found primarily in feces and saliva. Tetradecane is an alkane containing 14 carbon atoms[1].

   

Undecane

CH3-[CH2]9-CH3

C11H24 (156.18779039999998)


Undecane, also known as CH3-[CH2]9-CH3 or hendekan, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, undecane is considered to be a hydrocarbon lipid molecule. Undecane may also be used as an internal standard in gas chromatography when working with other hydrocarbons. For example, if one is working with a 50 m crosslinked methyl silicone capillary column with an oven temperature increasing slowly, beginning around 60 °C, an 11-carbon molecule like undecane may be used as an internal standard to be compared with the retention times of other 10-, 11-, or 12- carbon molecules, depending on their structures. Undecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. undecane has been detected, but not quantified, in cardamoms. This could make undecane a potential biomarker for the consumption of these foods. Since the boiling point of undecane (196 °C) is well known, it may be used as a comparison for retention times in a gas chromatograph for molecules whose structure has been freshly elucidated. It has 159 isomers. It is used as a mild sex attractant for various types of moths and cockroaches, and an alert signal for a variety of ants. Undecane, also known as ch3-[ch2]9-ch3 or hendekan, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, undecane is considered to be a hydrocarbon lipid molecule. Undecane can be found in cardamom, which makes undecane a potential biomarker for the consumption of this food product. Undecane can be found primarily in feces, saliva, and urine. Undecane may also be used as an internal standard in gas chromatography when working with other hydrocarbons. Since the boiling point of undecane (196 °C) is well known, it may be used as a comparison for retention times in a gas chromatograph for molecules whose structure has been freshly elucidated. For example, if one is working with a 50 m crosslinked methyl silicone capillary column with an oven temperature increasing slowly, beginning around 60 °C, an 11-carbon molecule like undecane may be used as an internal standard to be compared with the retention times of other 10-, 11-, or 12- carbon molecules, depending on their structures .

   

Lignocerane

CH3-[CH2]22-CH3

C24H50 (338.39123)


Lignocerane, also known as CH3-[CH2]22-CH3 or N-tetracosane, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Lignocerane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, lignocerane is considered to be a hydrocarbon lipid molecule. Lignocerane has been detected, but not quantified, in several different foods, such as lindens, citrus, sunflowers, allspices, and papaya. Isolated from plant sources e.g. rose and orange oils

   

Humulene epoxide I

Humulene epoxide I

C2H6 (30.0469476)


Humulene epoxide I is found in alcoholic beverages. Humulene epoxide I is a constituent of hops and wild ginger (Zingiber zerumbet).

   

Hexadecane

1,2-EPOXYHEXADECANE

C16H34 (226.2660364)


Hexadecane, also known as cetan or CH3-[CH2]14-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, hexadecane is considered to be a hydrocarbon lipid molecule. A straight-chain alkane with 16 carbon atoms. Hexadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hexadecane is an alkane tasting compound. Hexadecane is found, on average, in the highest concentration within black walnuts. Hexadecane has also been detected, but not quantified, in several different foods, such as allspices, cucumbers, tea, orange bell peppers, and herbs and spices. This could make hexadecane a potential biomarker for the consumption of these foods. Hexadecane, with regard to humans, has been linked to the inborn metabolic disorder celiac disease. Isolated from oil of Piper longum (long pepper)

   

N-Heptane

N-Heptane, ion (1+)

C7H16 (100.1251936)


N-Heptane, also known as heptan or CH3-[CH2]5-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, N-heptane is considered to be a hydrocarbon lipid molecule. N-Heptane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. N-Heptane is a sweet, alkane, and ethereal tasting compound. N-heptane has been detected, but not quantified, in cardamoms and gingers. This could make N-heptane a potential biomarker for the consumption of these foods. This is done by shaking the stained paper in a heptane solution for about half a minute. N-Heptane is a potentially toxic compound. It was originally chosen as the zero point of the scale because of the availability of very high purity n-heptane, unmixed with other isomers of heptane or other alkanes, distilled from the resin of Jeffrey pine and from the fruit of Pittosporum resiniferum. As a liquid, it is ideal for transport and storage. The 2,2-dimethylpentane isomer can be prepared by reacting tert-butyl chloride with n-propyl magnesium bromide. The linear n-heptane can be obtained from Jeffrey pine oil. In water, both bromine and iodine appear brown. n-Heptane is the straight-chain alkane with the chemical formula H3C(CH2)5CH3 or C7H16. Heptane is an alkane hydrocarbon with the chemical formula CH3(CH2)8CH3. Heptane has 9 isomers, or 11 if enantiomers are counted. N-Heptane is found in cardamom and ginger.

   

Octacosane

CH3-[CH2]26-CH3

C28H58 (394.4538268)


Octacosane, also known as ch3-[ch2]26-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, octacosane is considered to be a hydrocarbon lipid molecule. Octacosane can be found in a number of food items such as peach, linden, apple, and carrot, which makes octacosane a potential biomarker for the consumption of these food products. Octacosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Octacosane, also known as CH3-[CH2]26-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Octacosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, octacosane is considered to be a hydrocarbon lipid molecule. Octacosane has been detected, but not quantified, in several different foods, such as peachs, coconuts, apples, sweet cherries, and lindens. This could make octacosane a potential biomarker for the consumption of these foods. A straight-chain alkane containing 28 carbon atoms.

   

Hexacosane

CH3-[CH2]24-CH3

C26H54 (366.4225284)


Hexacosane, also known as ch3-[ch2]24-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, hexacosane is considered to be a hydrocarbon lipid molecule. Hexacosane can be found in a number of food items such as black elderberry, sunflower, papaya, and sweet cherry, which makes hexacosane a potential biomarker for the consumption of these food products. Hexacosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Hexacosane, also known as CH3-[CH2]24-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, hexacosane is considered to be a hydrocarbon lipid molecule. Hexacosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hexacosane has been detected, but not quantified, in several different foods, such as peachs, sunflowers, parsnips, coconuts, and papaya. This could make hexacosane a potential biomarker for the consumption of these foods. A straight-chain alkane comprising of 26 carbon atoms.

   

Nonadecane

Unknown branched fragment OF phospholipid

C19H40 (268.31298400000003)


Nonadecane, also known as CH3-[CH2]17-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Nonadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, nonadecane is considered to be a hydrocarbon lipid molecule. Nonadecane is an alkane and bland tasting compound. nonadecane has been detected, but not quantified, in several different foods, such as pomes, watermelons, yellow bell peppers, allspices, and papaya. This could make nonadecane a potential biomarker for the consumption of these foods. Nonadecane has been linked to the inborn metabolic disorders including celiac disease. Isolated from apple wax. Nonadecane is found in many foods, some of which are pepper (c. annuum), red bell pepper, papaya, and dill.

   

Eicosane

CH3-[CH2]18-CH3

C20H42 (282.3286332)


Eicosane, also known as ch3-[ch2]18-ch3 or octyldodecane, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, eicosane is considered to be a hydrocarbon lipid molecule. Eicosane is an alkane and waxy tasting compound and can be found in a number of food items such as linden, papaya, dill, and lemon balm, which makes eicosane a potential biomarker for the consumption of these food products. Eicosane can be found primarily in feces and saliva. Icosanes size, state or chemical inactivity does not exclude it from the traits its smaller alkane counterparts have. It is a colorless, non-polar molecule, nearly unreactive except when it burns. It is less dense than and insoluble in water. Its non-polar trait means it can only perform weak intermolecular bonding (hydrophobic/van der Waals forces) . Eicosane, also known as CH3-[CH2]18-CH3 or octyldodecane, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Eicosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, eicosane is considered to be a hydrocarbon lipid molecule. Eicosane is an alkane and waxy tasting compound. Eicosane is found, on average, in the highest concentration within lemon balms. Eicosane has also been detected, but not quantified, in several different foods, such as allspices, papaya, coconuts, lindens, and hyssops. This could make eicosane a potential biomarker for the consumption of these foods. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2.

   

Pentane

pentane

C5H12 (72.0938952)


Pentane, also known as CH3-[CH2]3-CH3 or R-601, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, pentane is considered to be a hydrocarbon lipid molecule. Gastric lavage, emesis, and the administration of activated charcoal should be avoided, as vomiting increases the risk of aspiration. Pentane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Pentane is an alkane tasting compound. Pentane is found, on average, in the highest concentration within kohlrabis. Pentane has also been detected, but not quantified, in a few different foods, such as alcoholic beverages, celery stalks, and soy beans. This could make pentane a potential biomarker for the consumption of these foods. Pentane is a potentially toxic compound. The main metabolite is 2-pentanol, followed by 3-pentanol, and 2-pentanone. It affects the peripheral nervous system through demyelinization and axonal degeneration. Pentane is a central nervous system depressant and can cause anorexia, euphoria, dizziness, headache, depression, confusion, inability to concentrate, anoxia, narcosis, and loss of consciousness and coma at high concentrations. Ingestion may cause pulmonary toxicity due to pentane aspiration, including chemical pneumonitis, acute lung injury, and hemorrhage. Pentane is absorbed following inhalation and ingestion, and to a small extent from dermal exposure. Present in hop oil

   

Nonane

CH3-[CH2]7-CH3

C9H20 (128.15649200000001)


Nonane is found in common oregano. Nonane is present in numerous plant oils including olive oils.Nonane is a linear alkane hydrocarbon with the chemical formula C9H20. Nonane has 35 structural isomers. (Wikipedia Present in numerous plant oils including olive oils

   

Octadecane

Octadecane, 1-(14)C-labeled CPD

C18H38 (254.2973348)


Octadecane, also known as CH3-[CH2]16-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Octadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, octadecane is considered to be a hydrocarbon lipid molecule. Octadecane is an alkane tasting compound. Octadecane has been detected, but not quantified, in several different foods, such as papaya, corianders, sunflowers, kohlrabis, and parsnips. Found in hop oil and other plant sources. Isolated from Piper longum (long pepper). Octadecane is an alkane that is used to store thermal energy at ambient temperature as a phase change material[1].

   

Dotriacontane

CH3-[CH2]30-CH3

C32H66 (450.5164236)


Constituent of Mentha aquatica (water mint). Dotriacontane is found in many foods, some of which are papaya, coconut, garden tomato (variety), and tea. Dotriacontane is found in coconut. Dotriacontane is a constituent of Mentha aquatica (water mint).

   

Capsicoside E

(2S,3R,4S,5S,6R)-2-{[(2S,3R,4S,5R,6R)-3-{[(2S,3R,4S,5R,6R)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-{[(2R,3R,4R,5R,6R)-4,5-dihydroxy-6-{[(1R,2S,4S,7S,8R,9S,12S,13S,15R,16R,18S)-15-hydroxy-6-methoxy-7,9,13-trimethyl-6-[3-({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)but-3-en-1-yl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-16-yl]oxy}-2-(hydroxymethyl)oxan-3-yl]oxy}-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C64H106O35 (1434.6514326000001)


Capsicoside E is found in pepper (c. annuum). Saponin isolated from the seeds of C. annuum L. var. acuminatu

   

Floratheasaponin I

(2S,3S,4S,5R,6R)-6-{[(3S,4aR,6aR,6bS,8R,8aR,9R,10R,12aS,14aR,14bR)-8a-[(acetyloxy)methyl]-8,9-dihydroxy-4,4,6a,6b,11,11,14b-heptamethyl-10-{[(2Z)-2-methylbut-2-enoyl]oxy}-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-4-{[(2S,3R,4S,5S)-4,5-dihydroxy-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3-hydroxy-5-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

C60H94O26 (1230.6033023999998)


Floratheasaponin i is a member of the class of compounds known as triterpene saponins. Triterpene saponins are glycosylated derivatives of triterpene sapogenins. The sapogenin moiety backbone is usually based on the oleanane, ursane, taraxastane, bauerane, lanostane, lupeol, lupane, dammarane, cycloartane, friedelane, hopane, 9b,19-cyclo-lanostane, cycloartane, or cycloartanol skeleton. Floratheasaponin i is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Floratheasaponin i can be found in tea, which makes floratheasaponin i a potential biomarker for the consumption of this food product.

   

Heptacosane

CH3-[CH2]25-CH3

C27H56 (380.4381776)


Heptacosane, also known as CH3-[CH2]25-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and consist entirely of hydrogen atoms and saturated carbon atoms. Thus, heptacosane is a hydrocarbon lipid molecule, is very hydrophobic, practically insoluble in water, and relatively neutral. Heptacosane has been detected in avocado, sunflowers, peachs, sweet cherries, and wild carrots. This could make heptacosane a potential biomarker for the consumption of these foods. Heptacosane, in addition to other flavonoids, alkaloids and sugars, extracted from the root of Trichosanthes dioica, exhibited antimicrobial activity against Proteus mirabilis and Bacillus subtilis http://www.phytojournal.com/archives/?year=2016&vol=5&issue=5&part=F&ArticleId=985 Heptacosane, also known as ch3-[ch2]25-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heptacosane is considered to be a hydrocarbon lipid molecule. Heptacosane can be found in a number of food items such as wild carrot, linden, sweet cherry, and papaya, which makes heptacosane a potential biomarker for the consumption of these food products. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions .

   

N-Pentacosane

CH3-[CH2]23-CH3

C25H52 (352.4068792)


Pentacosane, also known as ch3-[ch2]23-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, pentacosane is considered to be a hydrocarbon lipid molecule. Pentacosane can be found in a number of food items such as ginkgo nuts, papaya, black elderberry, and cardamom, which makes pentacosane a potential biomarker for the consumption of these food products. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . n-Pentacosane, also known as CH3-[CH2]23-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and consist entirely of hydrogen atoms and saturated carbon atoms. n-pentacosane is a hydrocarbon lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. n-Pentacosane has been detected in coconuts, avocado, ginkgo nuts, cardamoms, and lindens. This could make n-pentacosane a potential biomarker for the consumption of these foods. Pentacosane is one of the major components in the acetone extract from Curcuma raktakanda and is also in the essential oil from the leaves of Malus domestica. Pentacosane exhibit anti-cancer activities[1]. Pentacosane is one of the major components in the acetone extract from Curcuma raktakanda and is also in the essential oil from the leaves of Malus domestica. Pentacosane exhibit anti-cancer activities[1].

   

N-Triacontane

CH3-[CH2]28-CH3

C30H62 (422.48512519999997)


N-triacontane, also known as ch3-[ch2]28-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, N-triacontane is considered to be a hydrocarbon lipid molecule. N-triacontane can be found in a number of food items such as common sage, roman camomile, coconut, and radish, which makes N-triacontane a potential biomarker for the consumption of these food products. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . n-Triacontane, also known as CH3-[CH2]28-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and consist entirely of hydrogen atoms and saturated carbon atoms. Thus, n-triacontane is a hydrocarbon lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. N-Triacontane has been detected in roman camomiles, black elderberries, coconuts, corianders, and german camomiles. This could make n-Triacontane a potential biomarker for the consumption of these foods. n-Triacontane is also found in two medical plants: Leptadenia reticulata and Pluchea lanceolata (https://doi.org/10.1155/2014/143948).

   

Pentatriacontane

n-Pentatriacontane

C35H72 (492.5633712)


Pentatriacontane is a long-chain hydrocarbon containing 35 carbons. It belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, pentatriacontane is considered to be a hydrocarbon lipid molecule. Pentatriacontane is a very hydrophobic molecule, totally insoluble in water, and completely neutral. Pentatriacontane exists as a waxy solid. It is a naturally occurring compound that is found in parsley, several plant essential oils and in Candelilla wax. Candelilla wax is a wax derived from the leaves of the small Candelilla shrub native to northern Mexico and the southwestern United States. The Candelilla shrub is a member of the Euphorbia plant genus, from the family Euphorbiaceae. Candelilla wax is used as a food additive and a glazing agent. It also used in cosmetic industry, as a component of lip balms and lotion bars. One of its major uses is as a binder for chewing gums. Candelilla wax can be used as a substitute for carnauba wax and beeswax. It is also used for making varnish. Pentatriacontane is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, pentatriacontane is considered to be a hydrocarbon lipid molecule. Pentatriacontane can be found in parsley, which makes pentatriacontane a potential biomarker for the consumption of this food product. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions .