Classification Term: 170498
Macrolide lactones (ontology term: 89feda67199432d72ad1f7f079250b05)
found 500 associated metabolites at sub_class
metabolite taxonomy ontology rank level.
Ancestor: Macrolides
Child Taxonomies: There is no child term of current ontology term.
Funebrine
brefeldin A
D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents A metabolite from Penicillium brefeldianum that exhibits a wide range of antibiotic activity. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.042 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.035 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.034 [Raw Data] CB245_Brefeldin-A_pos_50eV_isCID-10eV_rep000008.txt [Raw Data] CB245_Brefeldin-A_pos_40eV_isCID-10eV_rep000008.txt [Raw Data] CB245_Brefeldin-A_pos_30eV_isCID-10eV_rep000008.txt [Raw Data] CB245_Brefeldin-A_pos_20eV_isCID-10eV_rep000008.txt [Raw Data] CB245_Brefeldin-A_pos_10eV_isCID-10eV_rep000008.txt Brefeldin A (BFA) is a lactone antibiotic and a specific inhibitor of protein trafficking. Brefeldin A blocks the transport of secreted and membrane proteins from endoplasmic reticulum to Golgi apparatus[1][2]. Brefeldin A is also an autophagy and mitophagy inhibitor[3]. Brefeldin A is a CRISPR/Cas9 activator[5]. Brefeldin A inhibits HSV-1 and has anti-cancer activity[5]. Brefeldin A (BFA) is a lactone antibiotic and a specific inhibitor of protein trafficking. Brefeldin A blocks the transport of secreted and membrane proteins from endoplasmic reticulum to Golgi apparatus[1][2]. Brefeldin A is also an autophagy and mitophagy inhibitor[3]. Brefeldin A is a CRISPR/Cas9 activator[5]. Brefeldin A inhibits HSV-1 and has anti-cancer activity[5].
(1R,7S,13S,15S)-2,15-Dihydroxy-7-methyl-6-oxabicyclo[11.3.0]hexadeca-3,11-dien-5-one
Multiplolide B
A 10-membered lactone obtained from 10-methyl-9,10-dihydro-2H-oxecin-2-one by the epoxidation of the double bond at position 3-4 and cis-dihydroxylation of the double bond at position 7-8, with further acylation of the hydroxy group at position 8 by a but-2-enoyl group. Multiplolide B was first isolated from the fungus Xylaria multiplex BCC 1111. It shows antifungal activity against Candida albicans. The epoxide group has cis-configuration, but its configuration relative to the other substituents was not established.
Aspergillide B
A macrolide that is 4,15-dioxabicyclo[9.3.1]pentadec-9-en-3-one substituted by a hydroxy group at position 14 and a methyl group at position 5 (the 1S,5S,9E,11R,14S stereoisomer). It is isolated from the marine-derived fungus Aspergillus ostianus and exhibits cytotoxic activity against mouse lymphocytic leukemia cells (L1210).
Aspergillide C
A macrolide that is 4,15-dioxabicyclo[9.3.1]pentadeca-9,12-dien-3-one substituted by a hydroxy group at position 14 and a methyl group at position 5 (the 1S,5S,9E,11R,14S stereoisomer). It is isolated from the marine-derived fungus Aspergillus ostianus and exhibits cytotoxic activity against mouse lymphocytic leukemia cells (L1210).
(10S,12S)-10-hydroxy-12-methyl-1-oxacyclododecane-2,5-dione
(3E,5S,8R,11E,13S,16R)-5,13-dihydroxy-8,16-dimethyl-1,9-dioxacyclohexadeca-3,11-diene-2,10-dione
Pandangolide 1a
A hexaketide lactone isolated from the sponge-associated fungus Cladosporium sp. It is a diastereoisomer of pandangolide 1.
Aspergillide A
A macrolide that is 4,15-dioxabicyclo[9.3.1]pentadec-9-en-3-one substituted by a hydroxy group at position 14 and a methyl group at position 5 (the 1R,5S,9E,11R,14S stereoisomer). It is isolated from the marine-derived fungus Aspergillus ostianus and exhibits cytotoxic activity against mouse lymphocytic leukemia cells (L1210).
UK-2B
A lactone which is 9-methyl-1,5-dioxonane-2,6-dione substituted by a benzyl group at position 8, a [(3-hydroxy-4-methoxypyridine-2-yl)carbonyl]amino group at position 3 and a (2-methylbut-2-enoyl)oxy group at position 7. It is isolated from the mycelia cake of Streptomyces sp. 517-02 and exhibits potent antifungal activity.