Resivit (BioDeep_00000868531)

Main id: BioDeep_00000005990

 

PANOMIX_OTCML-2023 PANOMIX-Anthocyanidin


代谢物信息卡片


rel-(2R,3S,4S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,4,5,7-tetrol

化学式: C15H14O7 (306.0739494)
中文名称: 白西尼多, 无色矢车菊素
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=CC(=C(C=C1C2C(C(C3=C(C=C(C=C3O2)O)O)O)O)O)O
InChI: InChI=1S/C15H14O7/c16-7-4-10(19)12-11(5-7)22-15(14(21)13(12)20)6-1-2-8(17)9(18)3-6/h1-5,13-21H/t13-,14-,15+/m0/s1

描述信息

Leucocyanidin is an active anti-ulcerogenic ingredient was extracted from Litchi Chinensis. Leucocyanidin demonstrates a significant protective effect against Aspirin-induced erosions in rat models[1].
Leucocyanidin is an active anti-ulcerogenic ingredient was extracted from Litchi Chinensis. Leucocyanidin demonstrates a significant protective effect against Aspirin-induced erosions in rat models[1].

同义名列表

17 个代谢物同义名

Leucocyanidin; Resivit; rel-(2R,3S,4S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,4,5,7-tetrol; 2-(3,4-Dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,4,5,7-tetrol; (2R,3S,4S)-2-(3,4-dihydroxyphenyl)chroman-3,4,5,7-tetrol; 2r-(3,4-dihydroxyphenyl)chromane-3t,4t,5,7-tetrol; 2,3-trans-3,4-cis-Leucocyanidin; 3,3,4,4,5,7-Flavanhexol; Leucoanthocyanidol; Leukocyanidine; Leucocianidol; Leucocyanidol; 3,4-Cyanidiol; Procyanidol; CHEBI:11412; 480-17-1; C05906



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(2)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

15 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Peiqiang Wang, Lingjie Zhang, Lei Zhao, Xinfu Zhang, Hanghang Zhang, Yahui Han, Xiaolan Jiang, Yajun Liu, Liping Gao, Tao Xia. Comprehensive Analysis of Metabolic Fluxes from Leucoanthocyanins to Anthocyanins and Proanthocyanidins (PAs). Journal of agricultural and food chemistry. 2020 Dec; 68(51):15142-15153. doi: 10.1021/acs.jafc.0c05048. [PMID: 33307696]
  • Keji Yu, Ji Hyung Jun, Changqing Duan, Richard A Dixon. VvLAR1 and VvLAR2 Are Bifunctional Enzymes for Proanthocyanidin Biosynthesis in Grapevine. Plant physiology. 2019 07; 180(3):1362-1374. doi: 10.1104/pp.19.00447. [PMID: 31092697]
  • Jia-Rong Zhang, Claudine Trossat-Magnin, Katell Bathany, Serge Delrot, Jean Chaudière. Oxidative Transformation of Leucocyanidin by Anthocyanidin Synthase from Vitis vinifera Leads Only to Quercetin. Journal of agricultural and food chemistry. 2019 Apr; 67(13):3595-3604. doi: 10.1021/acs.jafc.8b06968. [PMID: 30865451]
  • Jing Yang, Dawei Qian, Shu Jiang, Er-xin Shang, Jianming Guo, Jin-ao Duan. Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2012 Jun; 898(?):95-100. doi: 10.1016/j.jchromb.2012.04.024. [PMID: 22583754]
  • Daneel Ferreira, Christina M Coleman. Towards the synthesis of proanthocyanidins: half a century of innovation. Planta medica. 2011 Jul; 77(11):1071-85. doi: 10.1055/s-0030-1270908. [PMID: 21412691]
  • Hirotaka Shibuya, Andria Agusta, Kazuyoshi Ohashi, Shoji Maehara, Partomuan Simanjuntak. Biooxidation of (+)-catechin and (-)-epicatechin into 3,4-dihydroxyflavan derivatives by the endophytic fungus Diaporthe sp. isolated from a tea plant. Chemical & pharmaceutical bulletin. 2005 Jul; 53(7):866-7. doi: 10.1248/cpb.53.866. [PMID: 15997157]
  • Heather Ray, Min Yu, Patricia Auser, Laureen Blahut-Beatty, Brian McKersie, Steve Bowley, Neil Westcott, Bruce Coulman, Alan Lloyd, Margaret Y Gruber. Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maize Lc. Plant physiology. 2003 Jul; 132(3):1448-63. doi: 10.1104/pp.103.025361. [PMID: 12857826]
  • G J Tanner, K N Kristiansen. Synthesis of 3,4-cis-[3H]leucocyanidin and enzymatic reduction to catechin. Analytical biochemistry. 1993 Mar; 209(2):274-7. doi: 10.1006/abio.1993.1119. [PMID: 8470799]
  • S Cherian, R V Kumar, K T Augusti, J R Kidwai. Antidiabetic effect of a glycoside of pelargonidin isolated from the bark of Ficus bengalensis Linn. Indian journal of biochemistry & biophysics. 1992 Aug; 29(4):380-2. doi: . [PMID: 1427968]
  • R V Kumar, K T Augusti. Antidiabetic effect of a leucocyanidin derivative isolated from the bark of Ficus bengalensis Linn. Indian journal of biochemistry & biophysics. 1989 Dec; 26(6):400-4. doi: . [PMID: 2632365]
  • G H Ayars, L C Altman, C E O'Neil, B T Butcher, E Y Chi. Cotton dust-mediated lung epithelial injury. The Journal of clinical investigation. 1986 Dec; 78(6):1579-88. doi: 10.1172/jci112750. [PMID: 3782472]
  • J Edwards. International conference on byssinosis. Mechanisms of disease induction. Chest. 1981 Apr; 79(4 Suppl):38S-43S. doi: ". [PMID: 6162621]
  • . . . . doi: . [PMID: 23991027]