3-PENTANONE (BioDeep_00000331980)

 

Secondary id: BioDeep_00000594642

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


3-PENTANONE

化学式: C5H10O (86.0732)
中文名称: 3-戊酮
谱图信息: 最多检出来源 Viridiplantae(plant) 59.42%

分子结构信息

SMILES: CCC(=O)CC
InChI: InChI=1S/C5H10O/c1-3-5(6)4-2/h3-4H2,1-2H3

描述信息

A natural product found in Triatoma brasiliensis and Triatoma infestans.
3-pentanone, also known as diethyl ketone or ethyl propionyl, is a member of the class of compounds known as ketones. Ketones are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, 3-pentanone is considered to be an oxygenated hydrocarbon lipid molecule. 3-pentanone is soluble (in water) and an extremely weak acidic compound (based on its pKa). 3-pentanone is an acetone and ethereal tasting compound and can be found in a number of food items such as strawberry guava, ceylon cinnamon, beech nut, and pak choy, which makes 3-pentanone a potential biomarker for the consumption of these food products.

同义名列表

2 个代谢物同义名

3-PENTANONE; 3-Pentanone



数据库引用编号

10 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

121 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(119)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

46 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表


文献列表

  • Eliška Macková, Kateřina Hrušková, Petra Bendová, Anna Vávrová, Hana Jansová, Pavlína Hašková, Petra Kovaříková, Kateřina Vávrová, Tomáš Simůnek. Methyl and ethyl ketone analogs of salicylaldehyde isonicotinoyl hydrazone: novel iron chelators with selective antiproliferative action. Chemico-biological interactions. 2012 May; 197(2-3):69-79. doi: 10.1016/j.cbi.2012.03.010. [PMID: 22521999]
  • Caroline Bartel, Anna K Bytzek, Yulia Yu Scaffidi-Domianello, Gerlinde Grabmann, Michael A Jakupec, Christian G Hartinger, Markus Galanski, Bernhard K Keppler. Cellular accumulation and DNA interaction studies of cytotoxic trans-platinum anticancer compounds. Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry. 2012 Mar; 17(3):465-74. doi: 10.1007/s00775-011-0869-5. [PMID: 22227950]
  • Laila H Ribeiro, Ana M Costa Freitas, Marco D R Gomes da Silva. The use of headspace solid phase microextraction for the characterization of volatile compounds in olive oil matrices. Talanta. 2008 Oct; 77(1):110-7. doi: 10.1016/j.talanta.2008.05.051. [PMID: 18804607]
  • Jetske G de Boer, Cornelis A Hordijk, Maarten A Posthumus, Marcel Dicke. Prey and non-prey arthropods sharing a host plant: effects on induced volatile emission and predator attraction. Journal of chemical ecology. 2008 Mar; 34(3):281-90. doi: 10.1007/s10886-007-9405-z. [PMID: 18185960]
  • Dieter Enders, Sylvie Dhulut, Daniel Steinbusch, Audrey Herrbach. Asymmetric total synthesis of (-)-pironetin employing the SAMP/RAMP hydrazone methodology. Chemistry (Weinheim an der Bergstrasse, Germany). 2007; 13(14):3942-9. doi: 10.1002/chem.200601672. [PMID: 17295364]
  • Gudrun Olafsdottir, Rosa Jonsdottir, Hélène L Lauzon, Joop Luten, Kristberg Kristbergsson. Characterization of volatile compounds in chilled cod (Gadus morhua) fillets by gas chromatography and detection of quality indicators by an electronic nose. Journal of agricultural and food chemistry. 2005 Dec; 53(26):10140-7. doi: 10.1021/jf0517804. [PMID: 16366707]
  • Curtis M Kalua, Malcolm S Allen, Danny R Bedgood, Andrea G Bishop, Paul D Prenzler. Discrimination of olive oils and fruits into cultivars and maturity stages based on phenolic and volatile compounds. Journal of agricultural and food chemistry. 2005 Oct; 53(20):8054-62. doi: 10.1021/jf051233i. [PMID: 16190670]
  • Marie-Noëlle Leclercq-Perlat, Eric Latrille, Georges Corrieu, Henry-Eric Spinnler. Controlled production of Camembert-type cheeses. Part II. Changes in the concentration of the more volatile compounds. The Journal of dairy research. 2004 Aug; 71(3):355-66. doi: 10.1017/s0022029904000202. [PMID: 15354583]
  • R M Van Poecke, M A Posthumus, M Dicke. Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. Journal of chemical ecology. 2001 Oct; 27(10):1911-28. doi: 10.1023/a:1012213116515. [PMID: 11710601]
  • A D Clark, L J Dunne, S J Wyard. Electron spin resonance spin-label studies of mouse olfactory epithelium. Physiological chemistry and physics. 1980; 12(2):139-51. doi: ". [PMID: 6254101]
  • G C Varnam, M K Jeacock, D A Shepherd. Activities of ketone body utilising enzymes in tissues of fed and fasted sheep. Research in veterinary science. 1978 Jan; 24(1):124-5. doi: 10.1016/s0034-5288(18)33113-8. [PMID: 24243]
  • . . . . doi: . [PMID: 21169366]