Quercetin pentamethyl ether (BioDeep_00000277123)

 

Secondary id: BioDeep_00000182797, BioDeep_00000397034

natural product PANOMIX_OTCML-2023


代谢物信息卡片


3,5,7,3′,4′-Pentamethoxyflavone

化学式: C20H20O7 (372.120897)
中文名称: 栎精-3,5,7,3,4-五甲醚, 栎精-3,5,7,3',4'-五甲醚
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 75%

分子结构信息

SMILES: COC1=C(C=C(C=C1)C2=C(C(=O)C3=C(O2)C=C(C=C3OC)OC)OC)OC
InChI: InChI=1S/C20H20O7/c1-22-12-9-15(25-4)17-16(10-12)27-19(20(26-5)18(17)21)11-6-7-13(23-2)14(8-11)24-3/h6-10H,1-5H3

描述信息

3,5,7,3′,4′-Pentamethoxyflavone is a polymethoxyflavonoid that can be extracted from Kaempferia parviflora. 3,5,7,3′,4′-Pentamethoxyflavone can induce adipogenesis on 3T3-L1 preadipocytes by regulating transcription factors at an early stage of differentiation[1].
3,5,7,3′,4′-Pentamethoxyflavone is a polymethoxyflavonoid that can be extracted from Kaempferia parviflora. 3,5,7,3′,4′-Pentamethoxyflavone can induce adipogenesis on 3T3-L1 preadipocytes by regulating transcription factors at an early stage of differentiation[1].

同义名列表

2 个代谢物同义名

Quercetin pentamethyl ether; 3,5,7,3′,4′-Pentamethoxyflavone



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Noriyuki Natsume, Aki Yamano, Akio Watanabe, Takayuki Yonezawa, Je-Tae Woo, Tohru Yamakuni, Toshiaki Teruya. Effect of methoxyflavones contained in Kaempferia parviflora on CRE-mediated transcription in PC12D cells. Bioorganic & medicinal chemistry letters. 2020 12; 30(23):127606. doi: 10.1016/j.bmcl.2020.127606. [PMID: 33038547]
  • Somruedee Yorsin, Kanyanatt Kanokwiroon, Nisaudah Radenahmad, Chaweewan Jansakul. Increased vascular eNOS and cystathionine-γ-lyase protein after 6 weeks oral administration of 3, 5, 7, 3', 4'-pentamethoxyflavone to middle-aged male rats. Naunyn-Schmiedeberg's archives of pharmacology. 2016 Nov; 389(11):1183-1194. doi: 10.1007/s00210-016-1280-0. [PMID: 27468988]
  • Catheleeya Mekjaruskul, Bungorn Sripanidkulchai. Pharmacokinetic interaction between Kaempferia parviflora extract and sildenafil in rats. Journal of natural medicines. 2015 Apr; 69(2):224-31. doi: 10.1007/s11418-014-0882-4. [PMID: 25567192]
  • Yui Okabe, Tsutomu Shimada, Takumi Horikawa, Kaoru Kinoshita, Kiyotaka Koyama, Koji Ichinose, Masaki Aburada, Kunio Takahashi. Suppression of adipocyte hypertrophy by polymethoxyflavonoids isolated from Kaempferia parviflora. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2014 May; 21(6):800-6. doi: 10.1016/j.phymed.2014.01.014. [PMID: 24629599]
  • Catheleeya Mekjaruskul, Michael Jay, Bungorn Sripanidkulchai. Pharmacokinetics, bioavailability, tissue distribution, excretion, and metabolite identification of methoxyflavones in Kaempferia parviflora extract in rats. Drug metabolism and disposition: the biological fate of chemicals. 2012 Dec; 40(12):2342-53. doi: 10.1124/dmd.112.047142. [PMID: 22961680]
  • J Z Shen, L N Ma, Y Han, J X Liu, W Q Yang, L Chen, Y Liu, Y Hu, M W Jin. Pentamethylquercetin generates beneficial effects in monosodium glutamate-induced obese mice and C2C12 myotubes by activating AMP-activated protein kinase. Diabetologia. 2012 Jun; 55(6):1836-46. doi: 10.1007/s00125-012-2519-z. [PMID: 22415589]
  • Takumi Horikawa, Tsutomu Shimada, Yui Okabe, Kaoru Kinoshita, Kiyotaka Koyama, Ken-ichi Miyamoto, Koji Ichinose, Kunio Takahashi, Masaki Aburada. Polymethoxyflavonoids from Kaempferia parviflora induce adipogenesis on 3T3-L1 preadipocytes by regulating transcription factors at an early stage of differentiation. Biological & pharmaceutical bulletin. 2012; 35(5):686-92. doi: 10.1248/bpb.35.686. [PMID: 22687402]
  • Kikuyo Nakao, Kazuya Murata, Takahiro Deguchi, Kimihisa Itoh, Takanori Fujita, Masayuki Higashino, Yuri Yoshioka, Shin-Ichi Matsumura, Rika Tanaka, Tetsuro Shinada, Yasufumi Ohfune, Hideaki Matsuda. Xanthine oxidase inhibitory activities and crystal structures of methoxyflavones from Kaempferia parviflora rhizome. Biological & pharmaceutical bulletin. 2011; 34(7):1143-6. doi: 10.1248/bpb.34.1143. [PMID: 21720029]
  • L Y Chung, K F Yap, S H Goh, M R Mustafa, Z Imiyabir. Muscarinic receptor binding activity of polyoxygenated flavones from Melicope subunifoliolata. Phytochemistry. 2008 May; 69(7):1548-54. doi: 10.1016/j.phytochem.2008.01.024. [PMID: 18334259]
  • Denpong Patanasethanont, Junya Nagai, Chie Matsuura, Kyoko Fukui, Khaetthareeya Sutthanut, Bung-orn Sripanidkulchai, Ryoko Yumoto, Mikihisa Takano. Modulation of function of multidrug resistance associated-proteins by Kaempferia parviflora extracts and their components. European journal of pharmacology. 2007 Jul; 566(1-3):67-74. doi: 10.1016/j.ejphar.2007.04.001. [PMID: 17481606]
  • Denpong Patanasethanont, Junya Nagai, Ryoko Yumoto, Teruo Murakami, Khaetthareeya Sutthanut, Bung-Orn Sripanidkulchai, Chavi Yenjai, Mikihisa Takano. Effects of Kaempferia parviflora extracts and their flavone constituents on P-glycoprotein function. Journal of pharmaceutical sciences. 2007 Jan; 96(1):223-33. doi: 10.1002/jps.20769. [PMID: 17031860]