(R)-(E)-Sulforaphene (BioDeep_00000017282)

 

Secondary id: BioDeep_00000398323, BioDeep_00000400358

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


ISOTHIOCYANIC ACID, 4-(METHYLSULFINYL)-3-BUTENYL ESTER

化学式: C6H9NOS2 (175.0125544)
中文名称: (S)-萝卜丁酚, 莱菔素
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 13.51%

分子结构信息

SMILES: CS(=O)C=CCCN=C=S
InChI: InChI=1S/C6H9NOS2/c1-10(8)5-3-2-4-7-6-9/h3,5H,2,4H2,1H3/b5-3+

描述信息

Mustard oil from Glucoraphenin (see 4-(Methylthio)-3-butenyl glucosinolate KZZ70-M) in radish seeds (Raphanus sativus variety alba). (R)-(E)-Sulforaphene is found in root vegetables.
(R)-(E)-Sulforaphene is found in root vegetables. Mustard oil from Glucoraphenin (see 4-(Methylthio)-3-butenyl glucosinolate KZZ70-M) in radish seeds (Raphanus sativus var. alba
Sulforaphene is a natural product found in Thulinella chrysantha, Matthiola incana, and Raphanus sativus with data available.
Sulforaphene, isolated from radish seeds, exhibits an ED50 against velvetleaf seedlings approximately 2 x 10-4 M. Sulforaphene promotes cancer cells apoptosis and inhibits migration via inhibiting EGFR, p-ERK1/2, NF‐κB and other signals[1][2][3][4].
Sulforaphene, isolated from radish seeds, exhibits an ED50 against velvetleaf seedlings approximately 2 x 10-4 M. Sulforaphene promotes cancer cells apoptosis and inhibits migration via inhibiting EGFR, p-ERK1/2, NF‐κB and other signals[1][2][3][4].
Sulforaphene, isolated from radish seeds, exhibits an ED50 against velvetleaf seedlings approximately 2 x 10-4 M. Sulforaphene promotes cancer cells apoptosis and inhibits migration via inhibiting EGFR, p-ERK1/2, NF‐κB and other signals[1][2][3][4].

同义名列表

20 个代谢物同义名

ISOTHIOCYANIC ACID, 4-(METHYLSULFINYL)-3-BUTENYL ESTER; (1E)-4-Isothiocyanato-1-methanesulphinylbut-1-ene; (1E)-4-Isothiocyanato-1-(methylsulfinyl)-1-butene; (1E)-4-isothiocyanato-1-methanesulfinylbut-1-ene; (-)4-Isothiocyanato-4R-(methylsulfinyl)-1-butene; 1-Butene, 4-isothiocyanato-1-(methylsulfinyl)-; (E)-4-isothiocyanato-1-methylsulfinylbut-1-ene; 4-Isothiocyanato-1-(methylsulfinyl)-1-butene; 4-isothiocyanato-1-methylsulfinylbut-1-ene; 1-Methylsulfinylbutenyl isothiocyante; (R)-(e)-Sulphoraphene; (R)-(E)-Sulforaphene; UNII-NCO9MC39IO; S-Sulforaphene; sulphoraphene; Sulforaphene; Sulphoraphen; Sulforaphen; NCO9MC39IO; Raphanin



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

6 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Yusuke Yamaguchi, Mikio Sugiki, Motomi Shimizu, Kazuki Ogawa, Hitomi Kumagai. Comparative analysis of isothiocyanates in eight cruciferous vegetables and evaluation of the hepatoprotective effects of 4-(methylsulfinyl)-3-butenyl isothiocyanate (sulforaphene) from daikon radish (Raphanus sativus L.) sprouts. Food & function. 2024 May; 15(9):4894-4904. doi: 10.1039/d4fo00133h. [PMID: 38597802]
  • Tae Kyung Lee, Gihyun Hur, Jong Hun Kim, Jung Han Yoon Park, Hee Yang, Ki Won Lee. Micro-grinding-based production for sulforaphene-enriched radish seeds extract via facilitating glucosinolates-myrosinase reaction, and evaluation of its anti-adipogenic effects. Food chemistry. 2023 Jul; 429(?):136864. doi: 10.1016/j.foodchem.2023.136864. [PMID: 37506660]
  • Hwan Ju Hwang, Jong-Eun Kim, Ki Won Lee. Sulforaphene Attenuates Cutibacterium acnes-Induced Inflammation. Journal of microbiology and biotechnology. 2022 Nov; 32(11):1390-1395. doi: 10.4014/jmb.2209.09051. [PMID: 36437519]
  • Lili Wang, Hong Jiang, Xingxing Liang, Wenting Zhou, Yanjun Qiu, Changhu Xue, Jianan Sun, Xiangzhao Mao. Preparation of Sulforaphene from Radish Seed Extracts with Recombinant Food-Grade Yarrowia lipolytica Harboring High Myrosinase Activity. Journal of agricultural and food chemistry. 2021 May; 69(18):5363-5371. doi: 10.1021/acs.jafc.1c01400. [PMID: 33929187]
  • Hee Yang, Min Jeong Kang, Gihyun Hur, Tae Kyung Lee, In Sil Park, Sang Gwon Seo, Jae Gak Yu, Yong Sang Song, Jung Han Yoon Park, Ki Won Lee. Sulforaphene Suppresses Adipocyte Differentiation via Induction of Post-Translational Degradation of CCAAT/Enhancer Binding Protein Beta (C/EBPβ). Nutrients. 2020 Mar; 12(3):. doi: 10.3390/nu12030758. [PMID: 32183002]
  • Haina Wang, Fuqiang Wang, Sijin Wu, Zhiheng Liu, Tingting Li, Lei Mao, Jie Zhang, Cheng Li, Caigang Liu, Yongliang Yang. Traditional herbal medicine-derived sulforaphene promotes mitophagic cell death in lymphoma cells through CRM1-mediated p62/SQSTM1 accumulation and AMPK activation. Chemico-biological interactions. 2018 Feb; 281(?):11-23. doi: 10.1016/j.cbi.2017.12.017. [PMID: 29247643]
  • Nieves Baenas, Clara Suárez-Martínez, Cristina García-Viguera, Diego A Moreno. Bioavailability and new biomarkers of cruciferous sprouts consumption. Food research international (Ottawa, Ont.). 2017 10; 100(Pt 1):497-503. doi: 10.1016/j.foodres.2017.07.049. [PMID: 28873713]
  • Sarita Sangthong, Natthida Weerapreeyakul. Simultaneous quantification of sulforaphene and sulforaphane by reverse phase HPLC and their content in Raphanus sativus L. var. caudatus Alef extracts. Food chemistry. 2016 Jun; 201(?):139-44. doi: 10.1016/j.foodchem.2016.01.081. [PMID: 26868558]
  • Nieves Baenas, Stefanie Piegholdt, Anke Schloesser, Diego A Moreno, Cristina García-Viguera, Gerald Rimbach, Anika E Wagner. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster. International journal of molecular sciences. 2016 Feb; 17(2):251. doi: 10.3390/ijms17020251. [PMID: 26901196]
  • Jie Zhang, Xing Zhou, Min Fu. Integrated utilization of red radish seeds for the efficient production of seed oil and sulforaphene. Food chemistry. 2016 Feb; 192(?):541-7. doi: 10.1016/j.foodchem.2015.07.051. [PMID: 26304382]
  • Angelika Kaczyńska, Joanna Świerczyńska, Anna Herman-Antosiewicz. Sensitization of HER2 Positive Breast Cancer Cells to Lapatinib Using Plants-Derived Isothiocyanates. Nutrition and cancer. 2015; 67(6):976-86. doi: 10.1080/01635581.2015.1053498. [PMID: 26134366]
  • Nan Wang, Wei Wang, Po Huo, Cai-Qin Liu, Jian-Chang Jin, Lian-Qing Shen. Mitochondria-mediated apoptosis in human lung cancer A549 cells by 4-methylsulfinyl-3-butenyl isothiocyanate from radish seeds. Asian Pacific journal of cancer prevention : APJCP. 2014; 15(5):2133-9. doi: 10.7314/apjcp.2014.15.5.2133. [PMID: 24716946]
  • Dan Song, Hao Liang, Pengqun Kuang, Pingwah Tang, Gaofei Hu, Qipeng Yuan. Instability and Structural Change of 4-Methylsulfinyl-3-butenyl Isothiocyanate in the Hydrolytic Process. Journal of agricultural and food chemistry. 2013 May; 61(21):5097-102. doi: 10.1021/jf400355d. [PMID: 23688308]
  • Pengqun Kuang, Dan Song, Qipeng Yuan, Xinhua Lv, Di Zhao, Hao Liang. Preparative separation and purification of sulforaphene from radish seeds by high-speed countercurrent chromatography. Food chemistry. 2013 Jan; 136(2):309-15. doi: 10.1016/j.foodchem.2012.08.042. [PMID: 23122063]
  • Pengqun Kuang, Dan Song, Qipeng Yuan, Rui Yi, Xinhua Lv, Hao Liang. Separation and purification of sulforaphene from radish seeds using macroporous resin and preparative high-performance liquid chromatography. Food chemistry. 2013 Jan; 136(2):342-7. doi: 10.1016/j.foodchem.2012.08.082. [PMID: 23122068]
  • Hu Wang, Wen Lin, Guoxiang Shen, Tin-Oo Khor, Amin A Nomeir, Ah-Ng Kong. Development and validation of an LC-MS-MS method for the simultaneous determination of sulforaphane and its metabolites in rat plasma and its application in pharmacokinetic studies. Journal of chromatographic science. 2011 Nov; 49(10):801-6. doi: 10.1093/chrsci/49.10.801. [PMID: 22080809]
  • Chris Scholl, Bruce D Eshelman, David M Barnes, Paul R Hanlon. Raphasatin is a more potent inducer of the detoxification enzymes than its degradation products. Journal of food science. 2011 Apr; 76(3):C504-11. doi: 10.1111/j.1750-3841.2011.02078.x. [PMID: 21535821]