(-)-Epicatechin 3-O-gallate (BioDeep_00000017213)
Secondary id: BioDeep_00000033794, BioDeep_00000267569, BioDeep_00000402890, BioDeep_00000406553, BioDeep_00000407825, BioDeep_00000864020, BioDeep_00000865240
human metabolite PANOMIX_OTCML-2023 blood metabolite
代谢物信息卡片
化学式: C22H18O10 (442.09)
中文名称: (-)-表儿茶素没食子酸酯, 表儿茶素没食子酸酯, 表儿茶精没食子酸酯
谱图信息:
最多检出来源 Viridiplantae(plant) 21.84%
分子结构信息
SMILES: c1(cc(c2c(c1)O[C@@H]([C@@H](C2)OC(=O)c1cc(c(c(c1)O)O)O)c1ccc(c(c1)O)O)O)O
InChI: InChI=1S/C22H18O10/c23-11-6-14(25)12-8-19(32-22(30)10-4-16(27)20(29)17(28)5-10)21(31-18(12)7-11)9-1-2-13(24)15(26)3-9/h1-7,19,21,23-29H,8H2/t19-,21-/m1/s1
描述信息
(-)-epicatechin-3-O-gallate is a gallate ester obtained by formal condensation of the carboxy group of gallic acid with the (3R)-hydroxy group of epicatechin. A natural product found in Parapiptadenia rigida. It has a role as a metabolite, an EC 3.2.1.1 (alpha-amylase) inhibitor and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a catechin, a gallate ester and a polyphenol. It is functionally related to a (-)-epicatechin and a gallic acid.
(-)-Epicatechin gallate is a natural product found in Scurrula atropurpurea, Acacia omalophylla, and other organisms with data available.
Isolated from tea and numerous other plant subspecies inc. rhubarb and grapes. Epicatechin 3-gallate is found in many foods, some of which are cucumber, muskmelon, black raspberry, and cashew nut.
A gallate ester obtained by formal condensation of the carboxy group of gallic acid with the (3R)-hydroxy group of epicatechin. A natural product found in Parapiptadenia rigida.
(-)-Epicatechin 3-O-gallate is found in almond. (-)-Epicatechin 3-O-gallate is isolated from tea and numerous other plant species including rhubarb and grapes.
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors
D020011 - Protective Agents > D000975 - Antioxidants
D000970 - Antineoplastic Agents
(-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM.
(-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM.
(-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM.
(-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 7.5 μM.
同义名列表
61 个代谢物同义名
Benzoic acid, 3,4,5-trihydroxy-, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-5,7-dihydroxy-2H-1-benzopyran-3-yl ester, (2R-cis)-; Benzoic acid, 3,4,5-trihydroxy-, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-5,7- dihydroxy-2H-1-benzopyran-3-yl ester, (-)-cis-; Benzoic acid, 3,4,5-trihydroxy-, (2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-5,7-dihydroxy-2H-1-benzopyran-3-yl ester; (2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2H-1-benzopyran-3-yl 3,4,5-trihydroxybenzoate; [(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2H-chromen-3-yl] 3,4,5-trihydroxybenzoate; (2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2H-chromen-3-yl 3,4,5-trihydroxybenzoate; 3,4,5-Trihydroxy-benzoic acid (2R,3R)-2-(3,4-dihydroxy-phenyl)-5,7-dihydroxy-chroman-3-yl ester; 3,4,5-Trihydroxy-benzoic acid 2-(3,4-dihydroxy-phenyl)-5,7-dihydroxy-chroman-3-yl ester; rel-(2R,3R)-2-(3,4-Dihydroxyphenyl)-5,7-dihydroxychroman-3-yl 3,4,5-trihydroxybenzoate; [(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-chroman-3-yl] 3,4,5-trihydroxybenzoate; (2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychroman-3-yl 3,4,5-trihydroxybenzoate; Epicatechin gallate, primary pharmaceutical reference standard; (-)-Epicatechin gallate, >=98\\% (HPLC), from green tea; (-)-cis-3,3,4,5,7-Pentahydroxyflavane 3-gallic acid; (-)-cis-3,3,4,5,7-Pentahydroxyflavane 3-gallate; epicatechin gallate, (2R-cis)-isomer; (-)-Epicatechin 3-O-gallic acid; 3-Gallic acid(-)-epicatechol; (-)-EPI CATECHIN-3-O-GALLATE; Epicatechol, 3-gallate, (-)-; (-)-Epicatechin-3-O-gallate; (-)-Epicatechin 3-O-gallate; epicatechin-3-galloyl ester; (?)-Epicatechin 3-gallate; (-)-Epicatechin-3-gallate; Epicatechin 3-gallic acid; (-)-Epicatechin 3-gallate; epi-Catechin 3-O-gallate; 3-Gallate(-)-Epicatechol; epicatechin monogallate; EPICATECHIN 3-O-GALLATE; epicatechin-gallate-(-); epicatechin-3-O-gallate; (-)-Epicatechin gallate; (-) epicatechin gallate; (-)-epicatechingallate; (-)EPICATECHIN GALLATE; EPICATECHINGALLATE, L-; 3-O-Galloylepicatechin; (-)epicatechingallate; L-Epicatechin gallate; epicatechin-3-gallate; EPICATECHOL 3-GALLATE; Epicatechin 3-gallate; Epicatechol, gallate; epicatechin gallate; Spectrum5_000080; Spectrum3_000246; Spectrum4_001540; Spectrum2_000165; (-)-Epicatechin; MEGxp0_000810; DivK1c_006371; KBio1_001315; KBio2_005930; KBio2_003362; KBio2_000794; KBio3_001132; Teatannin; L-ECG; ECG
数据库引用编号
15 个数据库交叉引用编号
- ChEBI: CHEBI:70255
- PubChem: 107905
- HMDB: HMDB0037944
- ChEMBL: CHEMBL36327
- Wikipedia: Epicatechin_gallate
- LipidMAPS: LMPK12020090
- MeSH: epicatechin gallate
- ChemIDplus: 0001257085
- KNApSAcK: C00008866
- foodb: FDB017114
- chemspider: 97034
- CAS: 1257-08-5
- medchemexpress: HY-N0002
- MetaboLights: MTBLC70255
- KEGG: C22594
分类词条
相关代谢途径
Reactome(0)
代谢反应
3 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(1)
- galloylated catechin biosynthesis:
(-)-epicatechin + 1-O-galloyl-β-D-glucose ⟶ (-)-epicatechin-3-O-gallate + D-glucopyranose
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(2)
- galloylated catechin biosynthesis:
UDP-α-D-glucose + gallate ⟶ 1-O-galloyl-β-D-glucose + UDP
- galloylated catechin biosynthesis:
(-)-epicatechin + 1-O-galloyl-β-D-glucose ⟶ (-)-epicatechin-3-O-gallate + D-glucopyranose
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
113 个相关的物种来源信息
- 204988 - Acacia adunca: 10.1016/S0031-9422(00)85959-2
- 138511 - Acacia aulacocarpa: 10.1016/S0031-9422(00)85959-2
- 1174742 - Acacia binervia: 10.1016/S0031-9422(00)85959-2
- 139006 - Acacia calamifolia: 10.1016/S0031-9422(00)85959-2
- 1174755 - Acacia clunies-rossiae: 10.1016/S0031-9422(00)85959-2
- 1174758 - Acacia complanata: 10.1016/S0031-9422(00)85959-2
- 694541 - Acacia doratoxylon: 10.1016/S0031-9422(00)85959-2
- 224085 - Acacia mangium: 10.1016/S0031-9422(00)85959-2
- 1173659 - Acacia omalophylla: 10.1016/S0031-9422(00)85959-2
- 139013 - Acacia oswaldii: 10.1016/S0031-9422(00)85959-2
- 1174874 - Acacia pubifolia: 10.1016/S0031-9422(00)85959-2
- 880440 - Acacia pycnantha: 10.1016/S0031-9422(00)85959-2
- 1378425 - Acacia trineura: 10.1016/S0031-9422(00)85959-2
- 171204 - Acer barbinerve: 10.1007/S10600-011-0016-0
- 3625 - Actinidia chinensis:
- 714442 - Ampelopsis Japonica: -
- 714442 - Ampelopsis japonica: 10.1007/S11418-006-0119-2
- 171929 - Anacardium occidentale: 10.1021/JF061478A
- 4615 - Ananas comosus:
- 301862 - Annona reticulata: 10.1021/JF000549H
- 3818 - Arachis hypogaea: 10.1021/JF061478A
- 2516462 - Archidendron bubalinum: 10.1016/0031-9422(92)80375-O
- 28974 - Averrhoa carambola: 10.1007/S11418-008-0239-Y
- 3645 - Bertholletia excelsa: 10.1021/JF061478A
- 3708 - Brassica napus: 10.3389/FNUT.2022.822033
- 1407748 - Camellia crassicolumna: 10.1021/JF802974M
- 4442 - Camellia sinensis:
- 4072 - Capsicum annuum: 10.1021/JF000549H
- 32201 - Carya illinoinensis: 10.1021/JF061478A
- 21019 - Castanea: 10.1021/JF000549H
- 3827 - Cicer arietinum: 10.1021/JF000549H
- 13442 - Coffea: 10.1021/JF000026+
- 13450 - Corylus: 10.1021/JF061478A
- 3663 - Cucurbita pepo: 10.1021/JF000549H
- 36609 - Cydonia: 10.1021/JF000549H
- 32239 - Dasiphora fruticosa: 10.1007/BF00565058
- 4039 - Daucus carota: 10.1021/JF000549H
- 327901 - Detarium microcarpum: 10.1016/0166-3542(93)90095-Z
- 35925 - Diospyros kaki:
- 318062 - Euphorbia hirta:
- 2291126 - Fagopyrum acutatum: 10.1016/J.JEP.2005.02.029
- 516549 - Fagopyrum dibotrys: 10.1016/J.JEP.2005.02.029
- 3617 - Fagopyrum esculentum:
- 3494 - Ficus carica: 10.1021/JF000549H
- 3746 - Fragaria: 10.1021/JF000549H
- 229543 - Hibiscus cannabinus: 10.1007/BF00574392
- 9606 - Homo sapiens: -
- 51240 - Juglans regia: 10.1021/JF061478A
- 4236 - Lactuca sativa: 10.1021/JF000549H
- 3864 - Lens culinaris: 10.1021/JF000549H
- 4400 - Liquidambar styraciflua: 10.1016/0031-9422(93)85229-K
- 4329 - Macadamia: 10.1021/JF061478A
- 29747 - Mallotus japonicus: 10.1016/S0031-9422(00)98001-4
- 3750 - Malus domestica: 10.1021/JF000549H
- 283210 - Malus pumila: 10.1021/JF000549H
- 29780 - Mangifera indica: 10.1248/CPB.32.2676
- 98504 - Matricaria chamomilla: 10.1111/J.1365-2621.2005.TB08304.X
- 36616 - Mespilus germanica: 10.1021/JF000549H
- 1387640 - Mezoneuron benthamianum: 10.1076/1388-0209(200009)3841-AFT284
- 4640 - Musa:
- 208863 - Myriophyllum aquaticum: 10.1021/NP50066A004
- 119949 - Myrtus communis: 10.1007/BF02467181
- 91113 - Orostachys fimbriata: 10.1016/J.FITOTE.2008.10.003
- 4530 - Oryza sativa: 10.3390/MOLECULES16031917
- 40716 - Paeonia obovata: 10.1248/CPB.48.201
- 148713 - Parapiptadenia rigida: 10.1021/NP100523S
- 889930 - Parkia biglobosa: 10.1016/S0367-326X(99)00137-9
- 3435 - Persea americana:
- 46901 - Persicaria hydropiper: 10.1016/S0031-9422(98)00426-9
- 3885 - Phaseolus vulgaris: 10.1021/JF000549H
- 296036 - Phyllanthus emblica: 10.1021/NP000135I
- 296034 - Phyllanthus niruri: 10.1016/0031-9422(92)80352-F
- 3337 - Pinus: 10.1021/JF061478A
- 55513 - Pistacia vera: 10.1021/JF061478A
- 3888 - Pisum sativum: 10.1021/JF000549H
- 33090 - Plants: -
- 122832 - Platanus orientalis: 10.1023/B:CONC.0000025479.07578.5D
- 36596 - Prunus armeniaca: 10.1021/JF000549H
- 42229 - Prunus avium: 10.1021/JF000549H
- 3758 - Prunus domestica: 10.1021/JF000549H
- 3755 - Prunus dulcis: 10.1021/JF061478A
- 3760 - Prunus persica:
- 22663 - Punica granatum: 10.1021/JF000549H
- 642531 - Pyrola incarnata: 10.1016/0031-9422(89)80060-3
- 23211 - Pyrus communis: 10.1021/JF000549H
- 38942 - Quercus robur: 10.1007/BF02249631
- 137220 - Rheum officinale: 10.1016/S0944-7113(97)80075-X
- 137220 - Rheum officinale Baill.: -
- 137221 - Rheum palmatum L.: -
- 137226 - Rheum tanguticum Maxim. ex Balf.: -
- 666566 - Rhodiola semenovii:
- 880079 - Rhododendron dauricum: 10.1007/S10600-010-9649-7
- 255348 - Rhus typhina: 10.1007/BF00633406
- 175228 - Ribes rubrum: 10.1021/JF000549H
- 23216 - Rubus: 10.1021/JF000549H
- 41241 - Rumex acetosa: 10.1016/J.FITOTE.2009.08.015
- 182070 - Saxifraga stolonifera: 10.5511/PLANTBIOTECHNOLOGY.16.129
- 508984 - Schnella guianensis: 10.1016/0031-9422(88)80455-2
- 289766 - Sclerocarya birrea: 10.1021/JF030374M
- 1146880 - Scurrula atropurpurea: 10.1248/CPB.51.343
- 2726413 - Sedum crassularia: 10.1016/0031-9422(93)85416-O
- 28519 - Sedum sediforme: 10.1016/0031-9422(93)85416-O
- 138017 - Senegalia catechu: 10.1021/JF0531499
- 875646 - Senegalia polyacantha: 10.1021/JF0531499
- 4081 - Solanum lycopersicum: 10.1021/JF000549H
- 4111 - Solanum melongena: 10.1021/JF000549H
- 260143 - Syzygium samarangense: 10.1248/CPB.40.2671
- 39993 - Terminalia catappa: 10.1002/JCCS.199900085
- 4565 - Triticum aestivum: 10.1021/JF000549H
- 3906 - Vicia faba: 10.1021/JF000549H
- 29760 - Vitis vinifera:
- 326968 - Ziziphus jujuba: 10.1007/BF02291535
- 33090 - 茶: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Ziqiong Zhou, Yan Li, Fangyuan Wang, Guanghao Zhu, Shenglan Qi, Haonan Wang, Yuhe Ma, Rong Zhu, Yuejuan Zheng, Guangbo Ge, Ping Wang. Bioactive components and mechanisms of Pu-erh tea in improving levodopa metabolism in rats through COMT inhibition.
Food & function.
2024 May; 15(10):5287-5299. doi:
10.1039/d4fo00538d
. [PMID: 38639730] - Huimin Yong, Zeyu Wang, Jinbao Huang, Jun Liu. Preparation, characterization and application of antioxidant packaging films based on chitosan-epicatechin gallate conjugates with different substitution degrees.
International journal of biological macromolecules.
2024 Mar; 260(Pt 2):129568. doi:
10.1016/j.ijbiomac.2024.129568
. [PMID: 38246436] - Wei Zhu, Patricia I Oteiza. NADPH oxidase 1: A target in the capacity of dimeric ECG and EGCG procyanidins to inhibit colorectal cancer cell invasion.
Redox biology.
2023 Jul; 65(?):102827. doi:
10.1016/j.redox.2023.102827
. [PMID: 37516013] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Maniraj Rathinam, Shaily Tyagi, Narasimham Dokka, Sathish Kumar Marimuthu, Hemant Kumar, Doddachowdappa Sagar, Prasanta K Dash, Ajit Kumar Shasany, Rohini Sreevathsa. The plant specialized metabolite epicatechin- 3-gallate (EC3G) perturbs lipid metabolism and attenuates fat accumulation in pigeonpea pod borer, Helicoverpa armigera.
International journal of biological macromolecules.
2023 Mar; 231(?):123325. doi:
10.1016/j.ijbiomac.2023.123325
. [PMID: 36681223] - Luyao Chen, Yaping Guo, Zixuan Wu, Shuwu Zhao, Zhaiyi Zhang, Fang Zheng, Likang Sun, Zheng Hao, Chen Xu, Tao Wang, Yanfei Peng. Epicatechin gallate prevents the de novo synthesis of fatty acid and the migration of prostate cancer cells.
Acta biochimica et biophysica Sinica.
2021 Dec; 53(12):1662-1669. doi:
10.1093/abbs/gmab144
. [PMID: 34718375] - Carmela Maria Montone, Sara Elsa Aita, Anna Arnoldi, Anna Laura Capriotti, Chiara Cavaliere, Andrea Cerrato, Carmen Lammi, Susy Piovesana, Giulia Ranaldi, Aldo Laganà. Characterization of the Trans-Epithelial Transport of Green Tea (C. sinensis) Catechin Extracts with In Vitro Inhibitory Effect against the SARS-CoV-2 Papain-like Protease Activity.
Molecules (Basel, Switzerland).
2021 Nov; 26(21):. doi:
10.3390/molecules26216744
. [PMID: 34771162] - Lijiao Kan, Edoardo Capuano, Vincenzo Fogliano, Ruud Verkerk, Jurriaan J Mes, Monic M M Tomassen, Teresa Oliviero. Inhibition of α-glucosidases by tea polyphenols in rat intestinal extract and Caco-2 cells grown on Transwell.
Food chemistry.
2021 Nov; 361(?):130047. doi:
10.1016/j.foodchem.2021.130047
. [PMID: 34029903] - Jia Lei, Yong Zhang, Xuechen Ni, Xuejing Yu, Xingguo Wang. Degradation of epigallocatechin and epicatechin gallates by a novel tannase TanHcw from Herbaspirillum camelliae.
Microbial cell factories.
2021 Oct; 20(1):197. doi:
10.1186/s12934-021-01685-1
. [PMID: 34641872] - Sunanta Wangkarn, Kate Grudpan, Chartchai Khanongnuch, Thanawat Pattananandecha, Sutasinee Apichai, Chalermpong Saenjum. Development of HPLC Method for Catechins and Related Compounds Determination and Standardization in Miang (Traditional Lanna Fermented Tea Leaf in Northern Thailand).
Molecules (Basel, Switzerland).
2021 Oct; 26(19):. doi:
10.3390/molecules26196052
. [PMID: 34641598] - Jinjin Yu, Weifeng Li, Xin Xiao, Qiuxia Huang, Jiabao Yu, Yajie Yang, Tengfei Han, Dezhu Zhang, Xiaofeng Niu. (-)-Epicatechin gallate blocks the development of atherosclerosis by regulating oxidative stress in vivo and in vitro.
Food & function.
2021 Sep; 12(18):8715-8727. doi:
10.1039/d1fo00846c
. [PMID: 34365492] - Vijaya Lakshmi Bodiga, Praveen Kumar Vemuri, Madhukar Rao Kudle, Sreedhar Bodiga. Zinc ionophores isolated from Terminalia bellirica fruit rind extract protect against cardiomyocyte hypoxia/reoxygenation injury.
Bioorganic & medicinal chemistry.
2021 09; 46(?):116394. doi:
10.1016/j.bmc.2021.116394
. [PMID: 34509160] - Priyanka Maiti, Mahesha Nand, Tushar Joshi, Muthannan Andavar Ramakrishnan, Subhash Chandra. Identification of luteolin -7-glucoside and epicatechin gallate from Vernoniacinerea, as novel EGFR L858R kinase inhibitors against lung cancer: Docking and simulation-based study.
Journal of biomolecular structure & dynamics.
2021 09; 39(14):5048-5057. doi:
10.1080/07391102.2020.1784791
. [PMID: 32579072] - Koichi Sugimoto, Yasumasa Matsuoka, Kyoko Sakai, Norika Fujiya, Hiroyuki Fujii, Jun'ichi Mano. Catechins in green tea powder (matcha) are heat-stable scavengers of acrolein, a lipid peroxide-derived reactive carbonyl species.
Food chemistry.
2021 Sep; 355(?):129403. doi:
10.1016/j.foodchem.2021.129403
. [PMID: 33773455] - Mica Cabrera, Faizah Taher, Alendre Llantada, Quyen Do, Tyeshia Sapp, Monika Sommerhalter. Effect of Water Hardness on Catechin and Caffeine Content in Green Tea Infusions.
Molecules (Basel, Switzerland).
2021 Jun; 26(12):. doi:
10.3390/molecules26123485
. [PMID: 34201178] - Zihao Wang, Bingsong Ma, Cunqiang Ma, Chengqin Zheng, Binxing Zhou, Guiyi Guo, Tao Xia. Region identification of Xinyang Maojian tea using UHPLC-Q-TOF/MS-based metabolomics coupled with multivariate statistical analyses.
Journal of food science.
2021 May; 86(5):1681-1691. doi:
10.1111/1750-3841.15676
. [PMID: 33798265] - Kaitlyn E Redford, Salomé Rognant, Thomas A Jepps, Geoffrey W Abbott. KCNQ5 Potassium Channel Activation Underlies Vasodilation by Tea.
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology.
2021 Mar; 55(S3):46-64. doi:
10.33594/000000337
. [PMID: 33667331] - Rie Mukai, Takashi Fukuda, Asami Ohnishi, Takeshi Nikawa, Mutsuki Furusawa, Junji Terao. Chocolate as a food matrix reduces the bioavailability of galloylated catechins from green tea in healthy women.
Food & function.
2021 Jan; 12(1):408-416. doi:
10.1039/d0fo02485f
. [PMID: 33393957] - Pascale Goupil, Elodie Peghaire, Razik Benouaret, Claire Richard, Mohamad Sleiman, Hicham El Alaoui, Ayhan Kocer. Relationships between Plant Defense Inducer Activities and Molecular Structure of Gallomolecules.
Journal of agricultural and food chemistry.
2020 Dec; 68(52):15409-15417. doi:
10.1021/acs.jafc.0c05719
. [PMID: 33337882] - Tingting Chen, Yanfei Yang, Shajun Zhu, Yapeng Lu, Li Zhu, Yanqing Wang, Xiaoyong Wang. Inhibition of Aβ aggregates in Alzheimer's disease by epigallocatechin and epicatechin-3-gallate from green tea.
Bioorganic chemistry.
2020 12; 105(?):104382. doi:
10.1016/j.bioorg.2020.104382
. [PMID: 33137558] - Yuyang Zhang, Zhenglei Yang, Gege Liu, Yanwen Wu, Jie Ouyang. Inhibitory effect of chestnut (Castanea mollissima Blume) inner skin extract on the activity of α-amylase, α-glucosidase, dipeptidyl peptidase IV and in vitro digestibility of starches.
Food chemistry.
2020 Sep; 324(?):126847. doi:
10.1016/j.foodchem.2020.126847
. [PMID: 32344340] - Sara Crotti, Sara D'Aronco, Laura Moracci, Francesco Tisato, Marina Porchia, Luisa Mattoli, Michela Burico, Stella Bedont, Pietro Traldi, Marco Agostini. Evidence of noncovalent complexes in some natural extracts: Ceylon tea and mate extracts.
Journal of mass spectrometry : JMS.
2020 Jul; 55(7):e4459. doi:
10.1002/jms.4459
. [PMID: 31663260] - Qian Wu, Shimiao Tang, Liang Zhang, Jinsong Xiao, Qing Luo, Yuanyuan Chen, Mengzhou Zhou, Nianjie Feng, Chao Wang. The inhibitory effect of the catechin structure on advanced glycation end product formation in alcoholic media.
Food & function.
2020 Jun; 11(6):5396-5408. doi:
10.1039/c9fo02887k
. [PMID: 32469349] - Md Akil Hossain, Hae-Chul Park, Kwang-Jick Lee, Sung-Won Park, Seung-Chun Park, JeongWoo Kang. In vitro synergistic potentials of novel antibacterial combination therapies against Salmonella enterica serovar Typhimurium.
BMC microbiology.
2020 05; 20(1):118. doi:
10.1186/s12866-020-01810-x
. [PMID: 32410630] - Wei Zhu, Mei C Li, Feng R Wang, Gerardo G Mackenzie, Patricia I Oteiza. The inhibitory effect of ECG and EGCG dimeric procyanidins on colorectal cancer cells growth is associated with their actions at lipid rafts and the inhibition of the epidermal growth factor receptor signaling.
Biochemical pharmacology.
2020 05; 175(?):113923. doi:
10.1016/j.bcp.2020.113923
. [PMID: 32217102] - Priscila Mayara de Lima Oliveira, Aline Macedo Dantas, Alany Raquel Dos Santos Morais, Luciana Gibbert, Claudia Carneiro Hecke Krüger, Marcos Dos Santos Lima, Marciane Magnani, Graciele da Silva Campelo Borges. Juá fruit (Ziziphus joazeiro) from Caatinga: A source of dietary fiber and bioaccessible flavanols.
Food research international (Ottawa, Ont.).
2020 03; 129(?):108745. doi:
10.1016/j.foodres.2019.108745
. [PMID: 32036923] - Jin Li, Jian Zeng, Jinming Peng, Yangyang Jia, Chun-Mei Li. Simultaneous determination of the pharmacokinetics of A-type EGCG and ECG dimers in mice plasma and its metabolites by UPLC-QTOF-MS.
International journal of food sciences and nutrition.
2020 Mar; 71(2):211-220. doi:
10.1080/09637486.2019.1635089
. [PMID: 31266395] - Yuchen Gu, Gautier Moroy, Jean-Louis Paul, Anne-Sophie Rebillat, Mara Dierssen, Rafael de la Torre, Cécile Cieuta-Walti, Julien Dairou, Nathalie Janel. Molecular Rescue of Dyrk1A Overexpression Alterations in Mice with Fontup® Dietary Supplement: Role of Green Tea Catechins.
International journal of molecular sciences.
2020 Feb; 21(4):. doi:
10.3390/ijms21041404
. [PMID: 32092951] - Jing Chen, W P D Wass Thilakarathna, Tessema Astatkie, H P Vasantha Rupasinghe. Optimization of Catechin and Proanthocyanidin Recovery from Grape Seeds Using Microwave-Assisted Extraction.
Biomolecules.
2020 02; 10(2):. doi:
10.3390/biom10020243
. [PMID: 32033405] - Juan Chen, Zhi Zhang, Ping Yu, Wentao Gan, Kaihan Ren, Fang Zhang, Feng Chen, Mingwei Wang, Junzhe Bao, Tengfei Wang. Beneficial effects of green tea on age related diseases.
Frontiers in bioscience (Scholar edition).
2020 01; 12(1):70-91. doi:
10.2741/s541
. [PMID: 31585866] - Jing Xia, Dan Wang, Pei Liang, De Zhang, Xiaoqing Du, Dejiang Ni, Zhi Yu. Vibrational (FT-IR, Raman) analysis of tea catechins based on both theoretical calculations and experiments.
Biophysical chemistry.
2020 01; 256(?):106282. doi:
10.1016/j.bpc.2019.106282
. [PMID: 31756664] - Yiyao Qi, Changjun Yang, Zhen Jiang, Yin Wang, Feng Zhu, Tao Li, Xiaochun Wan, Yunhui Xu, Zijian Xie, Daxiang Li, Sandrine V Pierre. Epicatechin-3-Gallate Signaling and Protection against Cardiac Ischemia/Reperfusion Injury.
The Journal of pharmacology and experimental therapeutics.
2019 12; 371(3):663-674. doi:
10.1124/jpet.119.260117
. [PMID: 31582423] - Seda Yildirim-Elikoglu, Halil Vural. Binding characteristics of polyphenols as milk plasmin inhibitors.
Journal of the science of food and agriculture.
2019 Dec; 99(15):6922-6930. doi:
10.1002/jsfa.9978
. [PMID: 31393601] - Guopeng Wang, Yanhua Ji, Xueyan Li, Qian Wang, Hang Gong, Baoshun Wang, Yang Liu, Yanli Pan. Utilizing the Combination of Binding Kinetics and Micro-Pharmacokinetics Link in Vitro α-Glucosidase Inhibition to in Vivo Target Occupancy.
Biomolecules.
2019 09; 9(9):. doi:
10.3390/biom9090493
. [PMID: 31527517] - Yinyin Liao, Xiumin Fu, Haiyun Zhou, Wei Rao, Lanting Zeng, Ziyin Yang. Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry.
Food chemistry.
2019 Sep; 292(?):204-210. doi:
10.1016/j.foodchem.2019.04.055
. [PMID: 31054666] - Bihui Liu, Jing Zhang, Peng Sun, Ruokun Yi, Xiaoyan Han, Xin Zhao. Raw Bowl Tea (Tuocha) Polyphenol Prevention of Nonalcoholic Fatty Liver Disease by Regulating Intestinal Function in Mice.
Biomolecules.
2019 09; 9(9):. doi:
10.3390/biom9090435
. [PMID: 31480575] - Shahram Khademvatan, Kaveh Eskandari, Khosrow Hazrati-Tappeh, Fakher Rahim, Masoud Foroutan, Elham Yousefi, Negar Asadi. In silico and in vitro comparative activity of green tea components against Leishmania infantum.
Journal of global antimicrobial resistance.
2019 09; 18(?):187-194. doi:
10.1016/j.jgar.2019.02.008
. [PMID: 30797085] - Xiaqing Wu, Guowen Zhang, Xing Hu, Junhui Pan, Yijing Liao, Huafang Ding. Inhibitory effect of epicatechin gallate on protein glycation.
Food research international (Ottawa, Ont.).
2019 08; 122(?):230-240. doi:
10.1016/j.foodres.2019.04.023
. [PMID: 31229076] - Lixia Yuan, Min Liu, Yabo Shi, Hui Yan, Jun Han, Liying Liu. Effect of (-)-epicatechin-3-gallate and (-)-epigallocatechin-3-gallate on the binding of tegafur to human serum albumin as determined by spectroscopy, isothermal titration calorimetry, and molecular docking.
Journal of biomolecular structure & dynamics.
2019 Jul; 37(11):2776-2788. doi:
10.1080/07391102.2018.1505550
. [PMID: 30101645] - Ye Jiao, Jialiang He, Zhiyong He, Daming Gao, Fang Qin, Mingyong Xie, Maomao Zeng, Jie Chen. Formation of Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine during black tea processing.
Food research international (Ottawa, Ont.).
2019 07; 121(?):738-745. doi:
10.1016/j.foodres.2018.12.051
. [PMID: 31108804] - Ádina L Santana, Gabriela A Macedo. Effects of hydroalcoholic and enzyme-assisted extraction processes on the recovery of catechins and methylxanthines from crude and waste seeds of guarana (Paullinia cupana).
Food chemistry.
2019 May; 281(?):222-230. doi:
10.1016/j.foodchem.2018.12.091
. [PMID: 30658751] - Jia-Ping Ke, Wen-Ting Dai, Wen-Jun Zheng, Hao-Yue Wu, Fang Hua, Feng-Lin Hu, Gang-Xiu Chu, Guan-Hu Bao. Two Pairs of Isomerically New Phenylpropanoidated Epicatechin Gallates with Neuroprotective Effects on H2O2-Injured SH-SY5Y Cells from Zijuan Green Tea and Their Changes in Fresh Tea Leaves Collected from Different Months and Final Product.
Journal of agricultural and food chemistry.
2019 May; 67(17):4831-4838. doi:
10.1021/acs.jafc.9b01365
. [PMID: 30969762] - Aleksandra Golonko, Tomasz Pienkowski, Renata Swislocka, Ryszard Lazny, Marek Roszko, Wlodzimierz Lewandowski. Another look at phenolic compounds in cancer therapy the effect of polyphenols on ubiquitin-proteasome system.
European journal of medicinal chemistry.
2019 Apr; 167(?):291-311. doi:
10.1016/j.ejmech.2019.01.044
. [PMID: 30776692] - Christopher W Cunningham. Plant-Based Modulators of Endocannabinoid Signaling.
Journal of natural products.
2019 03; 82(3):636-646. doi:
10.1021/acs.jnatprod.8b00874
. [PMID: 30816712] - Eun-Hye Choi, Chan-Su Rha, Sri Renukadevi Balusamy, Dae-Ok Kim, Soon-Mi Shim. Impact of Bioconversion of Gallated Catechins and Flavonol Glycosides on Bioaccessibility and Intestinal Cellular Uptake of Catechins.
Journal of agricultural and food chemistry.
2019 Feb; 67(8):2331-2339. doi:
10.1021/acs.jafc.8b05733
. [PMID: 30767525] - Saddia Bano, Muhammad Asif Rasheed, Farrukh Jamil, Muhammad Ibrahim, Sumaira Kanwal. In Silico Identification of Novel Apolipoprotein E4 Inhibitor for Alzheimer's Disease Therapy.
Current computer-aided drug design.
2019; 15(1):97-103. doi:
10.2174/1573409914666181008164209
. [PMID: 30306878] - Gulsim Zhumashova, Wirginia Kukula-Koch, Wojciech Koch, Tomasz Baj, Galiya Sayakova, Alma Shukirbekova, Kazimierz Głowniak, Zuriyadda Sakipova. Phytochemical and Antioxidant Studies on a Rare Rheum cordatum Losinsk. Species from Kazakhstan.
Oxidative medicine and cellular longevity.
2019; 2019(?):5465463. doi:
10.1155/2019/5465463
. [PMID: 31827680] - Sara Matić, Milena Jadrijević-Mladar Takač, Monika Barbarić, Bono Lučić, Koraljka Gall Trošelj, Višnja Stepanić. The Influence of In Vivo Metabolic Modifications on ADMET Properties of Green Tea Catechins-In Silico Analysis.
Journal of pharmaceutical sciences.
2018 11; 107(11):2957-2964. doi:
10.1016/j.xphs.2018.07.026
. [PMID: 30077700] - Elahe Esmaeelpanah, Bibi Marjan Razavi, Faezeh Vahdati Hasani, Hossein Hosseinzadeh. Evaluation of epigallocatechin gallate and epicatechin gallate effects on acrylamide-induced neurotoxicity in rats and cytotoxicity in PC 12 cells.
Drug and chemical toxicology.
2018 Oct; 41(4):441-448. doi:
10.1080/01480545.2017.1381108
. [PMID: 29072525] - Lei Feng, Yongliang Yang, Xiaokui Huo, Xiangge Tian, Yujie Feng, Hanwen Yuan, Lijian Zhao, Chao Wang, Peng Chu, Feida Long, Wei Wang, Xiaochi Ma. Highly Selective NIR Probe for Intestinal β-Glucuronidase and High-Throughput Screening Inhibitors to Therapy Intestinal Damage.
ACS sensors.
2018 09; 3(9):1727-1734. doi:
10.1021/acssensors.8b00471
. [PMID: 30149692] - Eman Al-Sayed, Mohamed M Abdel-Daim. Analgesic and anti-inflammatory activities of epicatechin gallate from Bauhinia hookeri.
Drug development research.
2018 06; 79(4):157-164. doi:
10.1002/ddr.21430
. [PMID: 29732583] - Dan-Dan Tian, Joshua J Kellogg, Neşe Okut, Nicholas H Oberlies, Nadja B Cech, Danny D Shen, Jeannine S McCune, Mary F Paine. Identification of Intestinal UDP-Glucuronosyltransferase Inhibitors in Green Tea (Camellia sinensis) Using a Biochemometric Approach: Application to Raloxifene as a Test Drug via In Vitro to In Vivo Extrapolation.
Drug metabolism and disposition: the biological fate of chemicals.
2018 05; 46(5):552-560. doi:
10.1124/dmd.117.079491
. [PMID: 29467215] - Sumit Mukherjee, Rahman Hussaini, Richard White, Doaa Atwi, Angela Fried, Samay Sampat, Longzhu Piao, Quintin Pan, Probal Banerjee. TriCurin, a synergistic formulation of curcumin, resveratrol, and epicatechin gallate, repolarizes tumor-associated macrophages and triggers an immune response to cause suppression of HPV+ tumors.
Cancer immunology, immunotherapy : CII.
2018 May; 67(5):761-774. doi:
10.1007/s00262-018-2130-3
. [PMID: 29453519] - Jeong-Eun Park, Tae-Eun Kim, Kwang-Hee Shin. Quantitative Analysis of Four Catechins from Green Tea Extract in Human Plasma Using Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry for Pharmacokinetic Studies.
Molecules (Basel, Switzerland).
2018 04; 23(4):. doi:
10.3390/molecules23040984
. [PMID: 29690635] - Chen Yang, Zhengyan Hu, Meiling Lu, Pengliang Li, Junfeng Tan, Mei Chen, Haipeng Lv, Yin Zhu, Yue Zhang, Li Guo, Qunhua Peng, Weidong Dai, Zhi Lin. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea.
Food research international (Ottawa, Ont.).
2018 04; 106(?):909-919. doi:
10.1016/j.foodres.2018.01.069
. [PMID: 29580004] - Bo Yuan, Mei Lu, Kent M Eskridge, Loren D Isom, Milford A Hanna. Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells.
Food chemistry.
2018 Apr; 244(?):7-15. doi:
10.1016/j.foodchem.2017.09.116
. [PMID: 29120806] - Sumit Mukherjee, Juliet N E Baidoo, Samay Sampat, Andrew Mancuso, Lovena David, Leah S Cohen, Shuiqin Zhou, Probal Banerjee. Liposomal TriCurin, A Synergistic Combination of Curcumin, Epicatechin Gallate and Resveratrol, Repolarizes Tumor-Associated Microglia/Macrophages, and Eliminates Glioblastoma (GBM) and GBM Stem Cells.
Molecules (Basel, Switzerland).
2018 Jan; 23(1):. doi:
10.3390/molecules23010201
. [PMID: 29346317] - Jinming Peng, Kaikai Li, Wei Zhu, Xiangyi Deng, Chunmei Li. Separation and purification of four phenolic compounds from persimmon by high-speed counter-current chromatography.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2018 Jan; 1072(?):78-85. doi:
10.1016/j.jchromb.2017.11.010
. [PMID: 29136554] - Guoyuan Qi, Yashi Mi, Rong Fan, Beita Zhao, Bo Ren, Xuebo Liu. Tea polyphenols ameliorates neural redox imbalance and mitochondrial dysfunction via mechanisms linking the key circadian regular Bmal1.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2017 Dec; 110(?):189-199. doi:
10.1016/j.fct.2017.10.031
. [PMID: 29061316] - Zhihong Gong, Si Chen, Jiangtao Gao, Meihong Li, Xiaxia Wang, Jun Lin, Xiaomin Yu. [Isolation and purification of seven catechin compounds from fresh tea leaves by semi-preparative liquid chromatography].
Se pu = Chinese journal of chromatography.
2017 Nov; 35(11):1192-1197. doi:
10.3724/sp.j.1123.2017.08002
. [PMID: 29372766] - Wojciech Koch, Wirginia Kukula-Koch, Kazimierz Głowniak. Catechin Composition and Antioxidant Activity of Black Teas in Relation to Brewing Time.
Journal of AOAC International.
2017 Nov; 100(6):1694-1699. doi:
10.5740/jaoacint.17-0235
. [PMID: 28707612] - Wei Zhu, Xiangyi Deng, Jinming Peng, Bo Zou, Chunmei Li. A-type ECG and EGCG dimers inhibit 3T3-L1 differentiation by binding to cholesterol in lipid rafts.
The Journal of nutritional biochemistry.
2017 10; 48(?):62-73. doi:
10.1016/j.jnutbio.2017.06.012
. [PMID: 28772148] - Jing-Hsien Chen, Ming-Shih Lee, Chi-Ping Wang, Cheng-Chin Hsu, Hui-Hsuan Lin. Autophagic effects of Hibiscus sabdariffa leaf polyphenols and epicatechin gallate (ECG) against oxidized LDL-induced injury of human endothelial cells.
European journal of nutrition.
2017 Aug; 56(5):1963-1981. doi:
10.1007/s00394-016-1239-4
. [PMID: 27318926] - Qing-An Zhang, Xi-Zhe Fu, Juan Francisco García Martín. Effect of ultrasound on the interaction between (-)-epicatechin gallate and bovine serum albumin in a model wine.
Ultrasonics sonochemistry.
2017 Jul; 37(?):405-413. doi:
10.1016/j.ultsonch.2017.01.031
. [PMID: 28427650] - Lun K Tsou, Jacob S Yount, Howard C Hang. Epigallocatechin-3-gallate inhibits bacterial virulence and invasion of host cells.
Bioorganic & medicinal chemistry.
2017 06; 25(11):2883-2887. doi:
10.1016/j.bmc.2017.03.023
. [PMID: 28325635] - Han Ju, Jian Zhang, Boshi Huang, Dongwei Kang, Bing Huang, Xinyong Liu, Peng Zhan. Inhibitors of Influenza Virus Polymerase Acidic (PA) Endonuclease: Contemporary Developments and Perspectives.
Journal of medicinal chemistry.
2017 05; 60(9):3533-3551. doi:
10.1021/acs.jmedchem.6b01227
. [PMID: 28118010] - Angelo Zinellu, Salvatore Sotgia, Bastianina Scanu, Dionigia Arru, Annalisa Cossu, Anna Maria Posadino, Roberta Giordo, Arduino A Mangoni, Gianfranco Pintus, Ciriaco Carru. N- and S-homocysteinylation reduce the binding of human serum albumin to catechins.
European journal of nutrition.
2017 Mar; 56(2):785-791. doi:
10.1007/s00394-015-1125-5
. [PMID: 26658763] - Lu Cui, Yuxuan Liu, Ting Liu, Yahong Yuan, Tianli Yue, Rui Cai, Zhouli Wang. Extraction of Epigallocatechin Gallate and Epicatechin Gallate from Tea Leaves Using β-Cyclodextrin.
Journal of food science.
2017 Feb; 82(2):394-400. doi:
10.1111/1750-3841.13622
. [PMID: 28071811] - Shicheng Lei, Minhao Xie, Bing Hu, Li Zhou, Yi Sun, Muhammad Saeeduddin, Hongcheng Zhang, Xiaoxiong Zeng. Effective synthesis of theaflavin-3,3'-digallate with epigallocatechin-3-O-gallate and epicatechin gallate as substrates by using immobilized pear polyphenol oxidase.
International journal of biological macromolecules.
2017 Jan; 94(Pt A):709-718. doi:
10.1016/j.ijbiomac.2016.10.072
. [PMID: 27780760] - Mohd Farhan, Mohammad Oves, Sandesh Chibber, Sheikh Mumtaz Hadi, Aamir Ahmad. Mobilization of Nuclear Copper by Green Tea Polyphenol Epicatechin-3-Gallate and Subsequent Prooxidant Breakage of Cellular DNA: Implications for Cancer Chemotherapy.
International journal of molecular sciences.
2016 Dec; 18(1):. doi:
10.3390/ijms18010034
. [PMID: 28035959] - Salma Malik, Kapil Suchal, Jagriti Bhatia, Nanda Gamad, Amit Kumar Dinda, Yogendra Kumar Gupta, Dharamvir Singh Arya. Molecular mechanisms underlying attenuation of cisplatin-induced acute kidney injury by epicatechin gallate.
Laboratory investigation; a journal of technical methods and pathology.
2016 08; 96(8):853-61. doi:
10.1038/labinvest.2016.60
. [PMID: 27239733] - Aafreen Fathima, Jonnalagadda Raghava Rao. Selective toxicity of Catechin-a natural flavonoid towards bacteria.
Applied microbiology and biotechnology.
2016 Jul; 100(14):6395-6402. doi:
10.1007/s00253-016-7492-x
. [PMID: 27052380] - Xiao-li Guan, Yong-lin Huang, Ya-feng Wang, Dian-peng Li. [Study on the Chemical Constituents of Litchi chinensis Pericarp( Ⅱ)].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2016 Jun; 39(6):1291-5. doi:
. [PMID: 30156800]
- Ryusuke Takechi, Helman Alfonso, Naoko Hiramatsu, Akari Ishisaka, Akira Tanaka, La'Belle Tan, Andy H Lee. Elevated plasma and urinary concentrations of green tea catechins associated with improved plasma lipid profile in healthy Japanese women.
Nutrition research (New York, N.Y.).
2016 Mar; 36(3):220-6. doi:
10.1016/j.nutres.2015.11.010
. [PMID: 26923508] - Iva Boušová, Petra Matoušková, Hana Bártíková, Barbora Szotáková, Veronika Hanušová, Veronika Tománková, Eva Anzenbacherová, Barbora Lišková, Pavel Anzenbacher, Lenka Skálová. Influence of diet supplementation with green tea extract on drug-metabolizing enzymes in a mouse model of monosodium glutamate-induced obesity.
European journal of nutrition.
2016 Feb; 55(1):361-71. doi:
10.1007/s00394-015-0856-7
. [PMID: 25663641] - Ying-Na Zhang, Jun-Feng Yin, Jian-Xin Chen, Fang Wang, Qi-Zhen Du, Yong-Wen Jiang, Yong-Quan Xu. Improving the sweet aftertaste of green tea infusion with tannase.
Food chemistry.
2016 Feb; 192(?):470-6. doi:
10.1016/j.foodchem.2015.07.046
. [PMID: 26304374] - Jessie Godsey, Oliver Grundmann. Review of Various Herbal Supplements as Complementary Treatments for Oral Cancer.
Journal of dietary supplements.
2016; 13(5):538-50. doi:
10.3109/19390211.2015.1122693
. [PMID: 26863913] - Keiko Kobayashi, Yuki Ishizaki, Shosuke Kojo, Hiroe Kikuzaki. Strong Inhibition of Secretory Sphingomyelinase by Catechins, Particularly by (-)-Epicatechin 3-O-Gallate and (-)-3'-O-Methylepigallocatechin 3-O-Gallate.
Journal of nutritional science and vitaminology.
2016; 62(2):123-9. doi:
10.3177/jnsv.62.123
. [PMID: 27264097] - Silvia Wein, Birgit Beyer, Annika Gohlke, Ralf Blank, Cornelia C Metges, Siegfried Wolffram. Systemic Absorption of Catechins after Intraruminal or Intraduodenal Application of a Green Tea Extract in Cows.
PloS one.
2016; 11(7):e0159428. doi:
10.1371/journal.pone.0159428
. [PMID: 27427946] - Qian Li, Jun Chen, Ti Li, Chengmei Liu, Yuxin Zhai, David Julian McClements, Jiyan Liu. Separation and characterization of polyphenolics from underutilized byproducts of fruit production (Choerospondias axillaris peels): inhibitory activity of proanthocyanidins against glycolysis enzymes.
Food & function.
2015 Dec; 6(12):3693-701. doi:
10.1039/c5fo00939a
. [PMID: 26442714] - Namrita Lall, Navneet Kishore, Saeideh Momtaz, Ahmed Hussein, Sanushka Naidoo, Mabatho Nqephe, Bridget Crampton. Extract from Ceratonia siliqua Exhibits Depigmentation Properties.
Phytotherapy research : PTR.
2015 Nov; 29(11):1729-36. doi:
10.1002/ptr.5420
. [PMID: 26201055] - Ming Miao, Bo Jiang, Huan Jiang, Tao Zhang, Xingfeng Li. Interaction mechanism between green tea extract and human α-amylase for reducing starch digestion.
Food chemistry.
2015 Nov; 186(?):20-5. doi:
10.1016/j.foodchem.2015.02.049
. [PMID: 25976786] - Wei Zhu, Bo Zou, Rongzu Nie, Ying Zhang, Chun-mei Li. A-type ECG and EGCG dimers disturb the structure of 3T3-L1 cell membrane and strongly inhibit its differentiation by targeting peroxisome proliferator-activated receptor γ with miR-27 involved mechanism.
The Journal of nutritional biochemistry.
2015 Nov; 26(11):1124-35. doi:
10.1016/j.jnutbio.2015.05.006
. [PMID: 26145192] - Felix Grases, Rafel M Prieto, Rafel A Fernández-Cabot, Antonia Costa-Bauzá, Ana M Sánchez, Marin Prodanov. Effect of consuming a grape seed supplement with abundant phenolic compounds on the oxidative status of healthy human volunteers.
Nutrition journal.
2015 Sep; 14(?):94. doi:
10.1186/s12937-015-0083-3
. [PMID: 26353756] - Helena Rosado, Robert D Turner, Simon J Foster, Peter W Taylor. Impact of the β-Lactam Resistance Modifier (-)-Epicatechin Gallate on the Non-Random Distribution of Phospholipids across the Cytoplasmic Membrane of Staphylococcus aureus.
International journal of molecular sciences.
2015 Jul; 16(8):16710-27. doi:
10.3390/ijms160816710
. [PMID: 26213914] - Yuan-Ting Zhu, Xiao-Yun Ren, Li Yuan, Yi-Ming Liu, Jian Liang, Xun Liao. Fast identification of lipase inhibitors in oolong tea by using lipase functionalised Fe3O4 magnetic nanoparticles coupled with UPLC-MS/MS.
Food chemistry.
2015 Apr; 173(?):521-6. doi:
10.1016/j.foodchem.2014.10.087
. [PMID: 25466054] - Chun-Tang Chiu, Shu-Wen Hsuan, Hui-Hsuan Lin, Cheng-Chin Hsu, Fen-Pi Chou, Jing-Hsien Chen. Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy.
Journal of food science.
2015 Mar; 80(3):H649-58. doi:
10.1111/1750-3841.12790
. [PMID: 25694272] - Patrick Müller, Kevin M Downard. Catechin inhibition of influenza neuraminidase and its molecular basis with mass spectrometry.
Journal of pharmaceutical and biomedical analysis.
2015; 111(?):222-30. doi:
10.1016/j.jpba.2015.03.014
. [PMID: 25910046] - Lei Chen, Bo Yu, Yaofang Zhang, Xin Gao, Liang Zhu, Tonghui Ma, Hong Yang. Bioactivity-guided fractionation of an antidiarrheal Chinese herb Rhodiola kirilowii (Regel) Maxim reveals (-)-epicatechin-3-gallate and (-)-epigallocatechin-3-gallate as inhibitors of cystic fibrosis transmembrane conductance regulator.
PloS one.
2015; 10(3):e0119122. doi:
10.1371/journal.pone.0119122
. [PMID: 25747701] - Jana Schmuch, Sabine Beckert, Simone Brandt, Gesine Löhr, Fabian Hermann, Thomas J Schmidt, Thomas Beikler, Andreas Hensel. Extract from Rumex acetosa L. for prophylaxis of periodontitis: inhibition of bacterial in vitro adhesion and of gingipains of Porphyromonas gingivalis by epicatechin-3-O-(4β→8)-epicatechin-3-O-gallate (procyanidin-B2-Di-gallate).
PloS one.
2015; 10(3):e0120130. doi:
10.1371/journal.pone.0120130
. [PMID: 25803708] - S Perumal, R Mahmud, S Ramanathan. Anti-infective potential of caffeic acid and epicatechin 3-gallate isolated from methanol extract of Euphorbia hirta (L.) against Pseudomonas aeruginosa.
Natural product research.
2015; 29(18):1766-9. doi:
10.1080/14786419.2014.999242
. [PMID: 25571920] - Aurélien L Furlan, Marie-Lise Jobin, Sébastien Buchoux, Axelle Grélard, Erick J Dufourc, Julie Géan. Membrane lipids protected from oxidation by red wine tannins: a proton NMR study.
Biochimie.
2014 Dec; 107 Pt A(?):82-90. doi:
10.1016/j.biochi.2014.07.008
. [PMID: 25063276] - Pei Yin Tay, Chin Ping Tan, Faridah Abas, Hip Seng Yim, Chun Wai Ho. Assessment of extraction parameters on antioxidant capacity, polyphenol content, epigallocatechin gallate (EGCG), epicatechin gallate (ECG) and iriflophenone 3-C-β-glucoside of agarwood (Aquilaria crassna) young leaves.
Molecules (Basel, Switzerland).
2014 Aug; 19(8):12304-19. doi:
10.3390/molecules190812304
. [PMID: 25153858] - Sarah Paulin, Mohammed Jamshad, Timothy R Dafforn, Jorge Garcia-Lara, Simon J Foster, Nicola F Galley, David I Roper, Helena Rosado, Peter W Taylor. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a.
Nanotechnology.
2014 Jul; 25(28):285101. doi:
10.1088/0957-4484/25/28/285101
. [PMID: 24972373] - Lan-Sook Lee, Sang-Hee Kim, Young-Boong Kim, Young-Chan Kim. Quantitative analysis of major constituents in green tea with different plucking periods and their antioxidant activity.
Molecules (Basel, Switzerland).
2014 Jul; 19(7):9173-86. doi:
10.3390/molecules19079173
. [PMID: 24988187] - Yasir Hasan Siddique, Smita Jyoti, Falaq Naz. Effect of epicatechin gallate dietary supplementation on transgenic Drosophila model of Parkinson's disease.
Journal of dietary supplements.
2014 Jun; 11(2):121-30. doi:
10.3109/19390211.2013.859207
. [PMID: 24670116] - S Yousaf, M S Butt, H A R Suleria, M J Iqbal. The role of green tea extract and powder in mitigating metabolic syndromes with special reference to hyperglycemia and hypercholesterolemia.
Food & function.
2014 Mar; 5(3):545-56. doi:
10.1039/c3fo60203f
. [PMID: 24473227] - Keiko Narumi, Jun-Ichiro Sonoda, Keita Shiotani, Michihiro Shigeru, Masayuki Shibata, Akio Kawachi, Erisa Tomishige, Keizo Sato, Toshiro Motoya. Simultaneous detection of green tea catechins and gallic acid in human serum after ingestion of green tea tablets using ion-pair high-performance liquid chromatography with electrochemical detection.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2014 Jan; 945-946(?):147-53. doi:
10.1016/j.jchromb.2013.11.007
. [PMID: 24342507] - Waranya Lakornwong, Kwanjai Kanokmedhakul, Somdej Kanokmedhakul. Chemical constituents from the roots of Leea thorelii Gagnep.
Natural product research.
2014; 28(13):1015-7. doi:
10.1080/14786419.2014.891117
. [PMID: 24784484]