D-Arabino-hexos-2-ulose (BioDeep_00000012995)
Secondary id: BioDeep_00001869850, BioDeep_00001901016
human metabolite Endogenous
代谢物信息卡片
化学式: C6H10O6 (178.04773600000001)
中文名称: 2-酮-D-葡萄糖
谱图信息:
最多检出来源 Macaca mulatta(otcml) 0.4%
分子结构信息
SMILES: C(C(C(C(C(=O)C=O)O)O)O)O
InChI: InChI=1S/C6H10O6/c7-1-3(9)5(11)6(12)4(10)2-8/h1,4-6,8,10-12H,2H2/t4-,5+,6+/m0/s1
描述信息
D-Arabino-hexos-2-ulose is formed during sterilisation of foods by irradiation
同义名列表
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:52417
- ChEBI: CHEBI:48657
- KEGG: C19679
- PubChem: 10921067
- PubChem: 159630
- PubChem: 274194
- HMDB: HMDB0029932
- Metlin: METLIN73289
- MetaCyc: CPD-13129
- foodb: FDB001198
- chemspider: 140353
- CAS: 49865-02-3
- CAS: 26345-59-5
- CAS: 1854-25-7
- PMhub: MS000027348
- PubChem: 135626147
- KEGG: C22525
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
8 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(8)
- 2-keto-L-gulonate biosynthesis:
keto-L-sorbose + A ⟶ A(H2) + L-sorbosone
- L-ascorbate biosynthesis III:
keto-L-sorbose + A ⟶ A(H2) + L-sorbosone
- 2-keto-L-gulonate biosynthesis:
A + D-sorbitol ⟶ keto-L-sorbose + A(H2)
- L-ascorbate biosynthesis III:
A + D-sorbitol ⟶ keto-L-sorbose + A(H2)
- L-ascorbate biosynthesis III:
A + D-sorbitol ⟶ keto-L-sorbose + A(H2)
- 2-keto-L-gulonate biosynthesis:
A + D-sorbitol ⟶ keto-L-sorbose + A(H2)
- 2-keto-L-gulonate biosynthesis:
A + D-sorbitol ⟶ A(H2) + L-sorbopyranose
- L-ascorbate biosynthesis V:
A + D-sorbitol ⟶ A(H2) + L-sorbopyranose
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Manuel Balparda, Jessica Schmitz, Martin Duemmel, Isabell C Wuthenow, Marc Schmidt, Saleh Alseekh, Alisdair R Fernie, Martin J Lercher, Veronica G Maurino. Viridiplantae-specific GLXI and GLXII isoforms co-evolved and detoxify glucosone in planta.
Plant physiology.
2023 Feb; 191(2):1214-1233. doi:
10.1093/plphys/kiac526
. [PMID: 36423222] - Mahmoud H El-Maghrabey, Taro Nakatani, Naoya Kishikawa, Naotaka Kuroda. Aromatic aldehydes as selective fluorogenic derivatizing agents for α-dicarbonyl compounds. Application to HPLC analysis of some advanced glycation end products and oxidative stress biomarkers in human serum.
Journal of pharmaceutical and biomedical analysis.
2018 Sep; 158(?):38-46. doi:
10.1016/j.jpba.2018.05.012
. [PMID: 29860177] - Stefan Mittelmaier, Toshimitsu Niwa, Monika Pischetsrieder. Chemical and physiological relevance of glucose degradation products in peritoneal dialysis.
Journal of renal nutrition : the official journal of the Council on Renal Nutrition of the National Kidney Foundation.
2012 Jan; 22(1):181-5. doi:
10.1053/j.jrn.2011.10.014
. [PMID: 22200439] - Yoshimitsu Takakura, Shigeru Kuwata. Purification, characterization, and molecular cloning of a pyranose oxidase from the fruit body of the basidiomycete, Tricholoma matsutake.
Bioscience, biotechnology, and biochemistry.
2003 Dec; 67(12):2598-607. doi:
10.1271/bbb.67.2598
. [PMID: 14730138] - Ryoji Nagai, Yuka Unno, Miki Cristina Hayashi, Shuichi Masuda, Fumitaka Hayase, Naohide Kinae, Seikoh Horiuchi. Peroxynitrite induces formation of N( epsilon )-(carboxymethyl) lysine by the cleavage of Amadori product and generation of glucosone and glyoxal from glucose: novel pathways for protein modification by peroxynitrite.
Diabetes.
2002 Sep; 51(9):2833-9. doi:
10.2337/diabetes.51.9.2833
. [PMID: 12196478] - Torbjörn Linden, Arieh Cohen, Reinhold Deppisch, Per Kjellstrand, Anders Wieslander. 3,4-Dideoxyglucosone-3-ene (3,4-DGE): a cytotoxic glucose degradation product in fluids for peritoneal dialysis.
Kidney international.
2002 Aug; 62(2):697-703. doi:
10.1046/j.1523-1755.2002.00490.x
. [PMID: 12110035] - A Araki. [Oxidative stress and diabetes mellitus: a possible role of alpha-dicarbonyl compounds in free radical formation].
Nihon Ronen Igakkai zasshi. Japanese journal of geriatrics.
1997 Sep; 34(9):716-20. doi:
NULL
. [PMID: 9430981] - J R Baker, D V Zyzak, S R Thorpe, J W Baynes. Chemistry of the fructosamine assay: D-glucosone is the product of oxidation of Amadori compounds.
Clinical chemistry.
1994 Oct; 40(10):1950-5. doi:
10.1093/clinchem/40.10.1950
. [PMID: 7923778] - K Kobayashi, K Yoshimoto, K Hirauchi, K Uchida. Determination of glycated proteins in biological samples based on colorimetry of 2-keto-glucose released with hydrazine.
Biological & pharmaceutical bulletin.
1994 Mar; 17(3):365-9. doi:
10.1248/bpb.17.365
. [PMID: 8019498] - K Kobayashi, K Yoshimoto, K Hirauchi, K Uchida. A novel colorimetric method for determination of glycated protein based on 2-keto-glucose release with hydrazine.
Biological & pharmaceutical bulletin.
1993 Feb; 16(2):195-8. doi:
10.1248/bpb.16.195
. [PMID: 8364455] - T Nakayama, M Yamada, T Osawa, S Kawakishi. Lipid peroxidation of liposome induced by glucosone.
Journal of nutritional science and vitaminology.
1992 Aug; 38(4):381-90. doi:
10.3177/jnsv.38.381
. [PMID: 1291643] - R Z Cheng, K Uchida, S Kawakishi. Selective oxidation of histidine residues in proteins or peptides through the copper(II)-catalysed autoxidation of glucosone.
The Biochemical journal.
1992 Jul; 285 ( Pt 2)(?):667-71. doi:
10.1042/bj2850667
. [PMID: 1637358]