Zymosterol intermediate 2 (BioDeep_00000005819)

 

Secondary id: BioDeep_00000636698, BioDeep_00000866802

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


(2S,5S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol

化学式: C27H44O (384.3391974)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(feces) 3.37%

分子结构信息

SMILES: CC(C)=CCCC(C)C1CCC2C3=C(CCC21C)C1(C)CCC(O)CC1CC3
InChI: InChI=1S/C27H44O/c1-18(2)7-6-8-19(3)23-11-12-24-22-10-9-20-17-21(28)13-15-26(20,4)25(22)14-16-27(23,24)5/h7,19-21,23-24,28H,6,8-17H2,1-5H3/t19-,20+,21+,23-,24+,26+,27-/m1/s1

描述信息

Zymosterol, also known as 5alpha-cholesta-8,24-dien-3beta-ol or delta8,24-cholestadien-3beta-ol, belongs to cholesterols and derivatives class of compounds. Those are compounds containing a 3-hydroxylated cholestane core. Thus, zymosterol is considered to be a sterol lipid molecule. Zymosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Zymosterol can be synthesized from 5alpha-cholestane. Zymosterol is also a parent compound for other transformation products, including but not limited to, 4beta-methylzymosterol-4alpha-carboxylic acid, 3-dehydro-4-methylzymosterol, and zymosterol intermediate 1b. Zymosterol can be found in a number of food items such as squashberry, hard wheat, salmonberry, and loquat, which makes zymosterol a potential biomarker for the consumption of these food products. Zymosterol exists in all eukaryotes, ranging from yeast to humans. In humans, zymosterol is involved in several metabolic pathways, some of which include zoledronate action pathway, alendronate action pathway, pravastatin action pathway, and atorvastatin action pathway. Zymosterol is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, lysosomal acid lipase deficiency (wolman disease), smith-lemli-opitz syndrome (SLOS), and chondrodysplasia punctata II, X linked dominant (CDPX2). Zymosterol is an intermediate in cholesterol biosynthesis. Disregarding some intermediate compounds (e.g. 4-4-dimethylzymosterol) lanosterol can be considered a precursor of zymosterol in the cholesterol synthesis pathway. The conversion of zymosterol into cholesterol happens in the endoplasmic reticulum. Zymosterol accumulates quickly in the plasma membrane coming from the cytosol. The movement of zymosterol across the cytosol is more than twice as fast as the movement of cholesterol itself .
Zymosterol is the precursor of cholesterol and is found in the plasma membrane. zymosterol circulates within the cells. The structural features of zymosterol provided optimal substrate acceptability. In human fibroblasts, zymosterol is converted to cholesterol solely in the rough ER. Little or no zymosterol or cholesterol accumulates in the rough ER in vivo. Newly synthesized zymosterol moves to the plasma membrane without a detectable lag and with a half-time of 9 min, about twice as fast as cholesterol. The pool of radiolabeled zymosterol in the plasma membrane turns over rapidly, faster than does intracellular cholesterol. Thus, plasma membrane zymosterol is not stagnant. [3H]Zymosterol pulsed into intact cells is initially found in the plasma membrane. (PMID: 1939176).
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS

同义名列表

16 个代谢物同义名

(2S,5S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol; 5alpha-cholesta-8,24-dien-3beta-ol; (3b,5a)- Cholesta-8,24-dien-3-ol; delta8,24-Cholestadien-3beta-ol; Zymosterol intermediic acid 2; delta8,24-Cholestadien-3b-ol; 5a-Cholesta-8,24-dien-3b-ol; 5Α-cholesta-8,24-dien-3β-ol; Zymosterol intermediate 2; Δ8,24-cholestadien-3β-ol; Δ8,24-cholestadien-3b-ol; Cholesta-8,24-dien-3-ol; Cholest-8,24-dien-3b-ol; Zymosterol; FT-0699508; Zymostrol



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(4)

BioCyc(9)

PlantCyc(2)

代谢反应

526 个相关的代谢反应过程信息。

Reactome(80)

BioCyc(17)

WikiPathways(6)

Plant Reactome(365)

INOH(0)

PlantCyc(2)

  • cholesterol biosynthesis I: O2 + a reduced [NADPH-hemoprotein reductase] + squalene ⟶ (3S)-2,3-epoxy-2,3-dihydrosqualene + H2O + an oxidized [NADPH-hemoprotein reductase]
  • zymosterol biosynthesis: 14-demethyllanosterol + H+ + O2 + a ferrocytochrome b5 ⟶ 4α-hydroxymethyl-4β-methyl-5α-cholesta-8,24-dien-3β-ol + H2O + a ferricytochrome b5

COVID-19 Disease Map(1)

PathBank(55)

PharmGKB(0)

4 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Christoph Müller, Sandra Hemmers, Nicholas Bartl, Alois Plodek, Andreas Körner, Valbona Mirakaj, Martin Giera, Franz Bracher. New chemotype of selective and potent inhibitors of human delta 24-dehydrocholesterol reductase. European journal of medicinal chemistry. 2017 Nov; 140(?):305-320. doi: 10.1016/j.ejmech.2017.08.011. [PMID: 28964935]
  • Yanli Qi, Hui Liu, Jiayin Yu, Xiulai Chen, Liming Liu. Med15B Regulates Acid Stress Response and Tolerance in Candida glabrata by Altering Membrane Lipid Composition. Applied and environmental microbiology. 2017 09; 83(18):. doi: 10.1128/aem.01128-17. [PMID: 28710262]
  • Katarzyna Hąc-Wydro, Karolina Węder, Marzena Mach, Michał Flasiński, Paweł Wydro. The influence of cholesterol precursor--desmosterol--on artificial lipid membranes. Biochimica et biophysica acta. 2015 Aug; 1848(8):1639-45. doi: 10.1016/j.bbamem.2015.04.017. [PMID: 25960185]
  • Jorge Mansur Medina, Juliany Cola Fernandes Rodrigues, Otacilio C Moreira, Geórgia Atella, Wanderley de Souza, Hector Barrabin. Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine. Memorias do Instituto Oswaldo Cruz. 2015 Feb; 110(1):48-55. doi: 10.1590/0074-02760140097. [PMID: 25742263]
  • Katarzyna Hąc-Wydro, Paweł Wydro, Michał Flasiński. The comparison of zymosterol vs cholesterol membrane properties--the effect of zymosterol on lipid monolayers. Colloids and surfaces. B, Biointerfaces. 2014 Nov; 123(?):524-32. doi: 10.1016/j.colsurfb.2014.09.054. [PMID: 25444659]
  • Ga-Hee Shin, Markus Veen, Ulf Stahl, Christine Lang. Overexpression of genes of the fatty acid biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. Yeast (Chichester, England). 2012 Sep; 29(9):371-83. doi: 10.1002/yea.2916. [PMID: 22926964]
  • Jeffrey G McDonald, Daniel D Smith, Ashlee R Stiles, David W Russell. A comprehensive method for extraction and quantitative analysis of sterols and secosteroids from human plasma. Journal of lipid research. 2012 Jul; 53(7):1399-409. doi: 10.1194/jlr.d022285. [PMID: 22517925]
  • Yvonne Lange, Jin Ye, Theodore L Steck. Activation mobilizes the cholesterol in the late endosomes-lysosomes of Niemann Pick type C cells. PloS one. 2012; 7(1):e30051. doi: 10.1371/journal.pone.0030051. [PMID: 22276143]
  • Ashutosh Singh, Rajendra Prasad. Comparative lipidomics of azole sensitive and resistant clinical isolates of Candida albicans reveals unexpected diversity in molecular lipid imprints. PloS one. 2011 Apr; 6(4):e19266. doi: 10.1371/journal.pone.0019266. [PMID: 21559392]
  • Saif Hameed, Sanjiveeni Dhamgaye, Ashutosh Singh, Shyamal K Goswami, Rajendra Prasad. Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans. PloS one. 2011 Apr; 6(4):e18684. doi: 10.1371/journal.pone.0018684. [PMID: 21533276]
  • Mathieu Blanc, Wei Yuan Hsieh, Kevin A Robertson, Steven Watterson, Guanghou Shui, Paul Lacaze, Mizanur Khondoker, Paul Dickinson, Garwin Sing, Sara Rodríguez-Martín, Peter Phelan, Thorsten Forster, Birgit Strobl, Matthias Müller, Rudolph Riemersma, Timothy Osborne, Markus R Wenk, Ana Angulo, Peter Ghazal. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS biology. 2011 Mar; 9(3):e1000598. doi: 10.1371/journal.pbio.1000598. [PMID: 21408089]
  • Danni Cheng, Andrew M Jenner, Guanghou Shui, Wei Fun Cheong, Todd W Mitchell, Jessica R Nealon, Woojin S Kim, Heather McCann, Markus R Wenk, Glenda M Halliday, Brett Garner. Lipid pathway alterations in Parkinson's disease primary visual cortex. PloS one. 2011 Feb; 6(2):e17299. doi: 10.1371/journal.pone.0017299. [PMID: 21387008]
  • Hideki Kawashima, Masao Ohnishi, Satoshi Ogawa. Differences in sterol composition of gonads of the lottiid limpets Nipponacmea concinna and Nipponacmea fuscoviridis from northeastern Japan. Journal of oleo science. 2011; 60(10):501-4. doi: 10.5650/jos.60.501. [PMID: 21937849]
  • Fernando Alvarez-Vasquez, Howard Riezman, Yusuf A Hannun, Eberhard O Voit. Mathematical modeling and validation of the ergosterol pathway in Saccharomyces cerevisiae. PloS one. 2011; 6(12):e28344. doi: 10.1371/journal.pone.0028344. [PMID: 22194828]
  • Agata Leszczynska, Beata Burzynska, Danuta Plochocka, Joanna Kaminska, Magdalena Zimnicka, Magdalena Kania, Marek Kiliszek, Monika Wysocka-Kapcinska, Witold Danikiewicz, Anna Szkopinska. Investigating the effects of statins on cellular lipid metabolism using a yeast expression system. PloS one. 2009 Dec; 4(12):e8499. doi: 10.1371/journal.pone.0008499. [PMID: 20041128]
  • Eija Rintala, Mervi Toivari, Juha-Pekka Pitkänen, Marilyn G Wiebe, Laura Ruohonen, Merja Penttilä. Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae. BMC genomics. 2009 Oct; 10(?):461. doi: 10.1186/1471-2164-10-461. [PMID: 19804647]
  • Jure Acimovic, Anita Lövgren-Sandblom, Katalin Monostory, Damjana Rozman, Marko Golicnik, Dieter Lutjohann, Ingemar Björkhem. Combined gas chromatographic/mass spectrometric analysis of cholesterol precursors and plant sterols in cultured cells. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2009 Jul; 877(22):2081-6. doi: 10.1016/j.jchromb.2009.05.050. [PMID: 19525158]
  • Kelly Ishida, Juliany Cola Fernandes Rodrigues, Marcos Dornelas Ribeiro, Taíssa Vieira Machado Vila, Wanderley de Souza, Julio A Urbina, Celso Vataru Nakamura, Sonia Rozental. Growth inhibition and ultrastructural alterations induced by Delta24(25)-sterol methyltransferase inhibitors in Candida spp. isolates, including non-albicans organisms. BMC microbiology. 2009 Apr; 9(?):74. doi: 10.1186/1471-2180-9-74. [PMID: 19379501]
  • Wanderley de Souza, Juliany Cola Fernandes Rodrigues. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs. Interdisciplinary perspectives on infectious diseases. 2009; 2009(?):642502. doi: 10.1155/2009/642502. [PMID: 19680554]
  • Tomoko Iwaki, Haruyuki Iefuji, Yoshikazu Hiraga, Akira Hosomi, Tomotake Morita, Yuko Giga-Hama, Kaoru Takegawa. Multiple functions of ergosterol in the fission yeast Schizosaccharomyces pombe. Microbiology (Reading, England). 2008 Mar; 154(Pt 3):830-841. doi: 10.1099/mic.0.2007/011155-0. [PMID: 18310029]
  • Chendong Yang, Jeffrey G McDonald, Amit Patel, Yuan Zhang, Michihisa Umetani, Fang Xu, Emily J Westover, Douglas F Covey, David J Mangelsdorf, Jonathan C Cohen, Helen H Hobbs. Sterol intermediates from cholesterol biosynthetic pathway as liver X receptor ligands. The Journal of biological chemistry. 2006 Sep; 281(38):27816-26. doi: 10.1074/jbc.m603781200. [PMID: 16857673]
  • Heidemarie Müllner, Günter Deutsch, Erich Leitner, Elisabeth Ingolic, Günther Daum. YEH2/YLR020c encodes a novel steryl ester hydrolase of the yeast Saccharomyces cerevisiae. The Journal of biological chemistry. 2005 Apr; 280(14):13321-8. doi: 10.1074/jbc.m409914200. [PMID: 15632184]
  • Hong Liu, Alexandra Robert, Van Luu-The. Cloning and characterization of human form 2 type 7 17beta-hydroxysteroid dehydrogenase, a primarily 3beta-keto reductase and estrogen activating and androgen inactivating enzyme. The Journal of steroid biochemistry and molecular biology. 2005 Feb; 94(1-3):173-9. doi: 10.1016/j.jsbmb.2005.01.023. [PMID: 15862963]
  • Yajaira Suárez, Carlos Fernández, Diego Gómez-Coronado, Antonio J Ferruelo, Alberto Dávalos, Javier Martínez-Botas, Miguel A Lasunción. Synergistic upregulation of low-density lipoprotein receptor activity by tamoxifen and lovastatin. Cardiovascular research. 2004 Nov; 64(2):346-55. doi: 10.1016/j.cardiores.2004.06.024. [PMID: 15485695]
  • Norman B Javitt. Oxysteroids: a new class of steroids with autocrine and paracrine functions. Trends in endocrinology and metabolism: TEM. 2004 Oct; 15(8):393-7. doi: 10.1016/j.tem.2004.08.009. [PMID: 15380811]
  • Wenxu Zhou, W David Nes. Sterol methyltransferase2: purification, properties, and inhibition. Archives of biochemistry and biophysics. 2003 Dec; 420(1):18-34. doi: 10.1016/j.abb.2003.08.029. [PMID: 14622971]
  • Sari Lusa, Sanna Heino, Elina Ikonen. Differential mobilization of newly synthesized cholesterol and biosynthetic sterol precursors from cells. The Journal of biological chemistry. 2003 May; 278(22):19844-51. doi: 10.1074/jbc.m212503200. [PMID: 12657643]
  • Françoise Chevy, Françoise Illien, Claude Wolf, Charles Roux. Limb malformations of rat fetuses exposed to a distal inhibitor of cholesterol biosynthesis. Journal of lipid research. 2002 Aug; 43(8):1192-200. doi: . [PMID: 12177163]
  • K Baudry, E Swain, A Rahier, M Germann, A Batta, S Rondet, S Mandala, K Henry, G S Tint, T Edlind, M Kurtz, J T Nickels. The effect of the erg26-1 mutation on the regulation of lipid metabolism in Saccharomyces cerevisiae. The Journal of biological chemistry. 2001 Apr; 276(16):12702-11. doi: 10.1074/jbc.m100274200. [PMID: 11279045]
  • Y Lange. Cholesterol movement from plasma membrane to rough endoplasmic reticulum. Inhibition by progesterone. The Journal of biological chemistry. 1994 Feb; 269(5):3411-4. doi: . [PMID: 8106380]
  • Y Lange, F Echevarria, T L Steck. Movement of zymosterol, a precursor of cholesterol, among three membranes in human fibroblasts. The Journal of biological chemistry. 1991 Nov; 266(32):21439-43. doi: . [PMID: 1939176]
  • F Echevarria, R A Norton, W D Nes, Y Lange. Zymosterol is located in the plasma membrane of cultured human fibroblasts. The Journal of biological chemistry. 1990 May; 265(15):8484-9. doi: . [PMID: 2341392]
  • J K Chen, T Okamoto, J D Sato, G H Sato, D B McClure. Biochemical characterization of the cholesterol-dependent growth of the NS-1 mouse myeloma cell line. Experimental cell research. 1986 Mar; 163(1):117-26. doi: 10.1016/0014-4827(86)90563-x. [PMID: 3943557]
  • U F Taylor, A Kisic, R A Pascal, A Izumi, M Tsuda, G J Schroepfer. Sterol synthesis: a simple method for the isolation of zymosterol (5 alpha-cholesta-8, 24-dien-3 beta-ol) from yeast and spectral properties of zymosterol. Journal of lipid research. 1981 Jan; 22(1):171-7. doi: ". [PMID: 7012256]
  • N Yamaga, J L Gaylor. Characterization of the microsomal steroid-8-ene isomerase of cholesterol biosynthesis. Journal of lipid research. 1978 Mar; 19(3):375-82. doi: . [PMID: 650094]
  • G J SCHROEPFER. Conversion of zymosterol-C-14 and zymostenol-H3 to cholesterol by rat liver homogenates and intact rats. The Journal of biological chemistry. 1961 Jun; 236(?):1668-73. doi: . [PMID: 13748688]
  • G J ALEXANDER, E SCHWENK. Studies on biosynthesis of cholesterol. IX. Zymosterol as a precursor of cholesterol. Archives of biochemistry and biophysics. 1957 Feb; 66(2):381-7. doi: 10.1016/s0003-9861(57)80013-7. [PMID: 13403684]
  • . . . . doi: . [PMID: 16735517]