Astringin (BioDeep_00000003580)
Secondary id: BioDeep_00000227980, BioDeep_00000400383
natural product PANOMIX_OTCML-2023 Volatile Flavor Compounds
代谢物信息卡片
化学式: C20H22O9 (406.1263762)
中文名称: 白皮杉醇葡萄糖苷
谱图信息:
最多检出来源 Viridiplantae(plant) 1.3%
分子结构信息
SMILES: C(=C\c1cc(cc(c1)O[C@H]1[C@@H]([C@H]([C@@H]([C@@H](CO)O1)O)O)O)O)/c1ccc(c(c1)O)O
InChI: InChI=1/C20H22O9/c21-9-16-17(25)18(26)19(27)20(29-16)28-13-6-11(5-12(22)8-13)2-1-10-3-4-14(23)15(24)7-10/h1-8,16-27H,9H2/b2-1+/t16-,17-,18+,19-,20-/m1/s1
描述信息
Trans-astringin is a stilbenoid that is piceatannol substituted at position 3 by a beta-D-glucosyl residue. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a polyphenol, a stilbenoid, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a piceatannol.
Astringin is a natural product found in Fagopyrum megacarpum, Vitis vinifera, and other organisms with data available.
Astringin is a metabolite found in or produced by Saccharomyces cerevisiae.
A stilbenoid that is piceatannol substituted at position 3 by a beta-D-glucosyl residue.
Acquisition and generation of the data is financially supported in part by CREST/JST.
Astringin (trans-Astringin) is a natural glycoside found in the bark of Picea sitchensis and Picea abies (Norway spruce), in Vitis vinifera cell cultures and in wine. Astringin has potent antioxidant capacity and cancer-chemopreventive activity[1].
Astringin (trans-Astringin) is a natural glycoside found in the bark of Picea sitchensis and Picea abies (Norway spruce), in Vitis vinifera cell cultures and in wine. Astringin has potent antioxidant capacity and cancer-chemopreventive activity[1].
同义名列表
23 个代谢物同义名
(2S,3R,4S,5S,6R)-2-[3-[(E)-2-(3,4-dihydroxyphenyl)vinyl]-5-hydroxy-phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol; (2S,3R,4S,5S,6R)-2-(3-((E)-3,4-dihydroxystyryl)-5-hydroxyphenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol; (2s,3r,4s,5s,6r)-2-[3-[(e)-2-(3,4-dihydroxyphenyl)ethenyl]-5-hydroxyphenoxy]-6-(hydroxymethyl) oxane-3,4,5-triol; (2S,3R,4S,5S,6R)-2-(3-((E)-2-(3,4-DIHYDROXYPHENYL)ETHENYL)-5-HYDROXYPHENOXY)-6-(HYDROXYMETHYL)OXANE-3,4,5-TRIOL; (2S,3R,4S,5S,6R)-2-[3-[(E)-2-(3,4-dihydroxyphenyl)ethenyl]-5-hydroxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol; .BETA.-D-GLUCOPYRANOSIDE, 3-((1E)-2-(3,4-DIHYDROXYPHENYL)ETHENYL)-5-HYDROXYPHENYL; beta-D-Glucopyranoside, 3-(2-(3,4-dihydroxyphenyl)ethenyl)-5-hydroxyphenyl, (E)-; 3-((1E)-2-(3,4-DIHYDROXYPHENYL)ETHENYL)-5-HYDROXYPHENYL .BETA.-D-GLUCOPYRANOSIDE; 3-[(E)-2-(3,4-dihydroxyphenyl)ethenyl]-5-hydroxyphenyl beta-D-glucopyranoside; 3-[(E)-2-(3,4-Dihydroxyphenyl)vinyl]-5-hydroxyphenyl beta-D-glucopyranoside; 3,4,3,5-Tetrahydroxystilbene 3-glucoside; piceatannol 3-O-beta-D-glucoside; piceatannol 3-beta-D-glucoside; piceatannol 3-beta-glucoside; UNII-4ER6YKM4YL; trans-astringin; (E)-Astringin; E-Astringin; 4ER6YKM4YL; Astringin; E-3,4,5-Trihydroxy-3-glucopyranosylstilbene; SCHEMBL4255439; Astringin
数据库引用编号
31 个数据库交叉引用编号
- ChEBI: CHEBI:2899
- KEGG: C10245
- PubChem: 5281712
- PubChem: 5089891
- Metlin: METLIN53235
- ChEMBL: CHEMBL358769
- Wikipedia: Astringin
- LipidMAPS: LMPK13090007
- MeSH: astringin
- ChemIDplus: 0029884499
- KNApSAcK: C00002870
- chemspider: 4445028
- CAS: 29884-49-9
- MoNA: PS122902
- MoNA: PS122903
- MoNA: PS122909
- MoNA: PS122910
- MoNA: PR100927
- MoNA: PS122911
- MoNA: PS122908
- MoNA: PS122901
- MoNA: PS122907
- medchemexpress: HY-N4093
- PMhub: MS000010066
- MetaboLights: MTBLC2899
- PubChem: 12431
- 3DMET: B03670
- NIKKAJI: J412.313A
- RefMet: Astringin
- KNApSAcK: 2899
- LOTUS: LTS0147278
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
59 个相关的物种来源信息
- 3319 - Abies: LTS0147278
- 97171 - Abies nephrolepis: 10.1002/CBDV.201000373
- 97171 - Abies nephrolepis: LTS0147278
- 1227617 - Artemisia assoana: 10.1248/YAKUSHI1947.78.7_710
- 392618 - Cunila: 10.1007/S00299-018-2303-8
- 392618 - Cunila: LTS0147278
- 2759 - Eukaryota: LTS0147278
- 3803 - Fabaceae: LTS0147278
- 3616 - Fagopyrum: LTS0147278
- 154596 - Fagopyrum megacarpum: 10.1248/CPB.54.136
- 162786 - Guibourtia: LTS0147278
- 327903 - Guibourtia coleosperma: 10.1016/S0040-4039(00)88284-2
- 327903 - Guibourtia coleosperma: LTS0147278
- 4136 - Lamiaceae: LTS0147278
- 3398 - Magnoliopsida: LTS0147278
- 3328 - Picea: LTS0147278
- 3329 - Picea abies:
- 3329 - Picea abies: 10.1002/(SICI)1099-1565(199601)7:1<42::AID-PCA282>3.0.CO;2-K
- 3329 - Picea abies: 10.1002/JLAC.199219920170
- 3329 - Picea abies: 10.1016/0021-9673(95)00755-5
- 3329 - Picea abies: 10.1016/0031-9422(92)83500-X
- 3329 - Picea abies: 10.1016/0031-9422(95)00144-V
- 3329 - Picea abies: LTS0147278
- 3330 - Picea glauca:
- 67778 - Picea jezoensis: LTS0147278
- 689841 - Picea jezoensis var. jezoensis: 10.1007/BF00567035
- 689841 - Picea jezoensis var. jezoensis: LTS0147278
- 308680 - Picea koraiensis: 10.1007/BF00563957
- 331118 - Picea obovata: 10.1016/0031-9422(92)83500-X
- 3332 - Picea sitchensis:
- 3332 - Picea sitchensis: 10.1016/0031-9422(91)83610-W
- 3332 - Picea sitchensis: 10.1016/0885-5765(88)90049-5
- 3332 - Picea sitchensis: 10.1016/S0031-9422(00)88881-0
- 3332 - Picea sitchensis: 10.1111/J.1365-3059.1992.TB02555.X
- 3332 - Picea sitchensis: LTS0147278
- 3318 - Pinaceae: LTS0147278
- 58019 - Pinopsida: LTS0147278
- 33090 - Plants: -
- 3615 - Polygonaceae: LTS0147278
- 137221 - Rheum palmatum: -
- 1052904 - Scutellaria amoena: 10.1248/CPB.54.435
- 35493 - Streptophyta: LTS0147278
- 58023 - Tracheophyta: LTS0147278
- 33090 - Viridiplantae: LTS0147278
- 3602 - Vitaceae: LTS0147278
- 3603 - Vitis: LTS0147278
- 29760 - Vitis vinifera:
- 29760 - Vitis vinifera: 10.1016/S0003-2670(01)01498-2
- 29760 - Vitis vinifera: 10.1016/S0024-3205(97)00883-7
- 29760 - Vitis vinifera: 10.1021/JF9900884
- 29760 - Vitis vinifera: 10.1021/NP9605450
- 29760 - Vitis vinifera: 10.1021/NP9704819
- 29760 - Vitis vinifera: 10.1021/NP990239X
- 29760 - Vitis vinifera: 10.1093/CLINCHEM/43.6.1092
- 29760 - Vitis vinifera: 10.1186/S12870-016-0760-1
- 29760 - Vitis vinifera: 10.1207/S15327914NC402_14
- 29760 - Vitis vinifera: 10.3389/FPLS.2017.01124
- 29760 - Vitis vinifera: LTS0147278
- 33090 - 河套大黄: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jorge Rencoret, Duarte Neiva, Gisela Marques, Ana Gutiérrez, Hoon Kim, Jorge Gominho, Helena Pereira, John Ralph, José C Del Río. Hydroxystilbene Glucosides Are Incorporated into Norway Spruce Bark Lignin.
Plant physiology.
2019 07; 180(3):1310-1321. doi:
10.1104/pp.19.00344
. [PMID: 31023874] - Kyung Taek Heo, Byeongsan Lee, Sangkeun Son, Jong Seog Ahn, Jae-Hyuk Jang, Young-Soo Hong. Production of Bioactive 3'-Hydroxystilbene Compounds Using the Flavin-Dependent Monooxygenase Sam5.
Journal of microbiology and biotechnology.
2018 Jul; 28(7):1105-1111. doi:
10.4014/jmb.1804.04007
. [PMID: 30021423] - SeonJu Park, Yun Na Kim, Hee Jae Kwak, Eun Ju Jeong, Seung Hyun Kim. Estrogenic activity of constituents from the rhizomes of Rheum undulatum Linné.
Bioorganic & medicinal chemistry letters.
2018 02; 28(4):552-557. doi:
10.1016/j.bmcl.2018.01.063
. [PMID: 29402747] - Nellie Francezon, Naamwin-So-Bâwfu Romaric Meda, Tatjana Stevanovic. Optimization of Bioactive Polyphenols Extraction from Picea Mariana Bark.
Molecules (Basel, Switzerland).
2017 Dec; 22(12):. doi:
10.3390/molecules22122118
. [PMID: 29194377] - K V Kiselev, V P Grigorchuk, Z V Ogneva, A R Suprun, A S Dubrovina. Stilbene biosynthesis in the needles of spruce Picea jezoensis.
Phytochemistry.
2016 Nov; 131(?):57-67. doi:
10.1016/j.phytochem.2016.08.011
. [PMID: 27576046] - Tuula Jyske, Katsushi Kuroda, Jussi-Petteri Suuronen, Andrey Pranovich, Sílvia Roig-Juan, Dan Aoki, Kazuhiko Fukushima. In Planta Localization of Stilbenes within Picea abies Phloem.
Plant physiology.
2016 10; 172(2):913-928. doi:
10.1104/pp.16.00990
. [PMID: 27531441] - Daniel Girma Mulat, Harri Latva-Mäenpää, Harri Koskela, Pekka Saranpää, Kristiina Wähälä. Rapid chemical characterisation of stilbenes in the root bark of Norway spruce by off-line HPLC/DAD-NMR.
Phytochemical analysis : PCA.
2014 Nov; 25(6):529-36. doi:
10.1002/pca.2523
. [PMID: 24777944] - Almuth Hammerbacher, Axel Schmidt, Namita Wadke, Louwrance P Wright, Bernd Schneider, Joerg Bohlmann, Willi A Brand, Trevor M Fenning, Jonathan Gershenzon, Christian Paetz. A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce.
Plant physiology.
2013 Jul; 162(3):1324-36. doi:
10.1104/pp.113.218610
. [PMID: 23729780] - Sheng-Hong Li, Nina Elisabeth Nagy, Almuth Hammerbacher, Paal Krokene, Xue-Mei Niu, Jonathan Gershenzon, Bernd Schneider. Localization of phenolics in phloem parenchyma cells of Norway spruce (Picea abies).
Chembiochem : a European journal of chemical biology.
2012 Dec; 13(18):2707-13. doi:
10.1002/cbic.201200547
. [PMID: 23150460] - Almuth Hammerbacher, Steven G Ralph, Joerg Bohlmann, Trevor M Fenning, Jonathan Gershenzon, Axel Schmidt. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection.
Plant physiology.
2011 Oct; 157(2):876-90. doi:
10.1104/pp.111.181420
. [PMID: 21865488] - Fu-Chao Liu, Tsong-Long Hwang, Ying-Tung Lau, Huang-Ping Yu. Mechanism of salutary effects of astringinin on rodent hepatic injury following trauma-hemorrhage: Akt-dependent hemeoxygenase-1 signaling pathways.
PloS one.
2011; 6(10):e25907. doi:
10.1371/journal.pone.0025907
. [PMID: 22022464] - NamHui Yim, Do Thi Ha, Trinh Nam Trung, Jin Pyo Kim, SangMyung Lee, MinkYeun Na, HyunJu Jung, Hyun Su Kim, Young Ho Kim, KiHwan Bae. The antimicrobial activity of compounds from the leaf and stem of Vitis amurensis against two oral pathogens.
Bioorganic & medicinal chemistry letters.
2010 Feb; 20(3):1165-8. doi:
10.1016/j.bmcl.2009.12.020
. [PMID: 20022753] - Blanka Benová, Martin Adam, Katerina Onderková, Josef Královský, Milan Krajícek. Analysis of selected stilbenes in Polygonum cuspidatum by HPLC coupled with CoulArray detection.
Journal of separation science.
2008 Jul; 31(13):2404-9. doi:
10.1002/jssc.200800119
. [PMID: 18646269] - Xavier Vitrac, Aurélie Bornet, Regina Vanderlinde, Josep Valls, Tristan Richard, Jean-Claude Delaunay, Jean-Michel Mérillon, Pierre-Louis Teissédre. Determination of stilbenes (delta-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, epsilon-viniferin) in Brazilian wines.
Journal of agricultural and food chemistry.
2005 Jul; 53(14):5664-9. doi:
10.1021/jf050122g
. [PMID: 15998130] - P Waffo-Téguo, M E Hawthorne, M Cuendet, J M Mérillon, A D Kinghorn, J M Pezzuto, R G Mehta. Potential cancer-chemopreventive activities of wine stilbenoids and flavans extracted from grape (Vitis vinifera) cell cultures.
Nutrition and cancer.
2001; 40(2):173-9. doi:
10.1207/s15327914nc402_14
. [PMID: 11962253] - Waffo Teguo P, Fauconneau, Deffieux, Huguet, Vercauteren, Merillon. Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from vitis vinifera cell cultures.
Journal of natural products.
1998 May; 61(5):655-7. doi:
10.1021/np9704819
. [PMID: 9599270]