13(S)-Hydroperoxylinolenic acid (BioDeep_00000003300)

 

Secondary id: BioDeep_00001869115

human metabolite


代谢物信息卡片


(9Z,11E,15Z)-(13S)-13-Hydroperoxyoctadeca-9,11,15-trienoic acid

化学式: C18H30O4 (310.2144)
中文名称: 13(s)-氢过氧基-(9z,11e,15z)-十八三烯酸
谱图信息: 最多检出来源 Homo sapiens(plant) 13.44%

分子结构信息

SMILES: CC/C=C\C[C@@H](/C=C/C=C\CCCCCCCC(=O)O)OO
InChI: InChI=1S/C18H30O4/c1-2-3-11-14-17(22-21)15-12-9-7-5-4-6-8-10-13-16-18(19)20/h7,9,11-12,14-15,17,21H,2-6,8,10,13,16H2,1H3,(H,19,20)/b9-7-,14-11-,15-12+/t17-/m0/s1

描述信息

13(s)-hydroperoxylinolenic acid, also known as 13(S)-hpotre or 13-hpot, belongs to lineolic acids and derivatives class of compounds. Those are derivatives of lineolic acid. Lineolic acid is a polyunsaturated omega-6 18 carbon long fatty acid, with two CC double bonds at the 9- and 12-positions. Thus, 13(s)-hydroperoxylinolenic acid is considered to be an octadecanoid lipid molecule. 13(s)-hydroperoxylinolenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 13(s)-hydroperoxylinolenic acid can be found in a number of food items such as grass pea, garden tomato (variety), american butterfish, and black crowberry, which makes 13(s)-hydroperoxylinolenic acid a potential biomarker for the consumption of these food products. .
D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

同义名列表

25 个代谢物同义名

(9Z,11E,15Z)-(13S)-13-Hydroperoxyoctadeca-9,11,15-trienoic acid; (9Z,11E,14Z)-(13S)-13-Hydroperoxyoctadeca-9,11,14-trienoic acid; (9Z,11E,13S,15Z)-13-Hydroperoxy-9,11,15-octadecatrienoic acid; (9Z,11E,13S,15Z)-13-hydroperoxyoctadeca-9,11,15-trienoic acid; (9Z,11E,15Z)-(13S)-Hydroperoxyoctadeca-9,11,15-trienoic acid; (9Z,11E,15Z)-(13S)-13-Hydroperoxyoctadeca-9,11,15-trienoate; (9Z,11E,13S,15Z)-13-Hydroperoxyoctadeca-9,11,15-trienoate; (13S)-Hydroperoxy-cis-9,15-trans-11-octadecatrienoic acid; (9Z,11E,15Z)-(13S)-Hydroperoxyoctadeca-9,11,15-trienoate; 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid; 13S-Hydroperoxy-9(Z),11(e),15(Z)-octadecatrienoic acid; 13(s)-hydroperoxy-(9z,11e,15z)-octadecatrienoic acid; 13(S)-Hydroperoxy-9(Z),11(e),15(Z)-octadecatrienoate; 13S-Hydroperoxy-9(Z),11(e),15(Z)-octadecatrienoate; 13S-hydroperoxy-9Z,11E,14Z-octadecatrienoic acid; 13S-Hydroperoxy-9Z,11E,15Z-octadecatrienoic acid; 13S-Hydroperoxy-9Z,11E,15Z-octadecatrienoate; 13-Hydroperoxy-9,11,15-octadecatrienoic acid; 13(S)-Hydroperoxylinolenic acid; 13(S)-Hydroperoxylinolenate; 13(S)-HpOTrE; (13S)-HPLA; 13(S)-HPOT; 13S-HpOTrE; 13-HPOT



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

380 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(380)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Ting Zeng, Baohua Fang, Fenglin Huang, Li Dai, Zhi Tang, Jinglin Tian, Guodong Cao, Xuanlin Meng, Yuanchen Liu, Bo Lei, Minghua Lu, Zongwei Cai. Mass spectrometry-based metabolomics investigation on two different indica rice grains (Oryza sativa L.) under cadmium stress. Food chemistry. 2021 May; 343(?):128472. doi: 10.1016/j.foodchem.2020.128472. [PMID: 33139121]
  • Deboever Estelle, Lins Laurence, Ongena Marc, De Clerck Caroline, Deleu Magali, Fauconnier Marie-Laure. Linolenic fatty acid hydroperoxide acts as biocide on plant pathogenic bacteria: Biophysical investigation of the mode of action. Bioorganic chemistry. 2020 07; 100(?):103877. doi: 10.1016/j.bioorg.2020.103877. [PMID: 32388427]
  • Yana Y Toporkova, Svetlana S Gorina, Elena K Bessolitsyna, Elena O Smirnova, Valeria S Fatykhova, Fredi Brühlmann, Tatiana M Ilyina, Lucia S Mukhtarova, Alexander N Grechkin. Double function hydroperoxide lyases/epoxyalcohol synthases (CYP74C) of higher plants: identification and conversion into allene oxide synthases by site-directed mutagenesis. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2018 Apr; 1863(4):369-378. doi: 10.1016/j.bbalip.2018.01.002. [PMID: 29325723]
  • Svetlana S Gorina, Yana Y Toporkova, Lucia S Mukhtarova, Elena O Smirnova, Ivan R Chechetkin, Bulat I Khairutdinov, Yuri V Gogolev, Alexander N Grechkin. Oxylipin biosynthesis in spikemoss Selaginella moellendorffii: Molecular cloning and identification of divinyl ether synthases CYP74M1 and CYP74M3. Biochimica et biophysica acta. 2016 Apr; 1861(4):301-9. doi: 10.1016/j.bbalip.2016.01.001. [PMID: 26776054]
  • Eiichiro Ono, Taiki Handa, Takao Koeduka, Hiromi Toyonaga, Moataz M Tawfik, Akira Shiraishi, Jun Murata, Kenji Matsui. CYP74B24 is the 13-hydroperoxide lyase involved in biosynthesis of green leaf volatiles in tea (Camellia sinensis). Plant physiology and biochemistry : PPB. 2016 Jan; 98(?):112-8. doi: 10.1016/j.plaphy.2015.11.016. [PMID: 26686283]
  • Martin Mariutto, Marie-Laure Fauconnier, Marc Ongena, Morgan Laloux, Jean-Paul Wathelet, Patrick du Jardin, Philippe Thonart, Jacques Dommes. Reprogramming of fatty acid and oxylipin synthesis in rhizobacteria-induced systemic resistance in tomato. Plant molecular biology. 2014 Mar; 84(4-5):455-67. doi: 10.1007/s11103-013-0144-y. [PMID: 24146221]
  • Pushpalatha Hosur Gnanaprakash, Sudisha Jogaiah, Ashok Prabhu Sreedhara, Geetha Nagraj Prashanth, Ramachandra K Kini, Shekar Hunthrike Shetty. Association between accumulation of allene oxide synthase activity and development of resistance against downy mildew disease of pearl millet. Molecular biology reports. 2013 Dec; 40(12):6821-9. doi: 10.1007/s11033-013-2799-5. [PMID: 24166513]
  • Richard K Hughes, Faridoon K Yousafzai, Ruth Ashton, Ivan R Chechetkin, Shirley A Fairhurst, Mats Hamberg, Rod Casey. Evidence for communality in the primary determinants of CYP74 catalysis and of structural similarities between CYP74 and classical mammalian P450 enzymes. Proteins. 2008 Sep; 72(4):1199-211. doi: 10.1002/prot.22012. [PMID: 18338380]
  • Kyung Myung, Thomas R Hamilton-Kemp, Douglas D Archbold. Biosynthesis of trans-2-hexenal in response to wounding in strawberry fruit. Journal of agricultural and food chemistry. 2006 Feb; 54(4):1442-8. doi: 10.1021/jf052068+. [PMID: 16478272]
  • Alexander N Grechkin, Mats Hamberg. The "heterolytic hydroperoxide lyase" is an isomerase producing a short-lived fatty acid hemiacetal. Biochimica et biophysica acta. 2004 Feb; 1636(1):47-58. doi: 10.1016/j.bbalip.2003.12.003. [PMID: 14984738]
  • Alexander N Grechkin, Lucia S Mukhtarova, Mats Hamberg. Detection of an enol intermediate in the hydroperoxide lyase chain cleavage reaction. FEBS letters. 2003 Aug; 549(1-3):31-4. doi: 10.1016/s0014-5793(03)00758-0. [PMID: 12914919]
  • F Husson, J M Belin. Purification of hydroperoxide lyase from green bell pepper (Capsicum annuum L.) fruits for the generation of C6-aldehydes in vitro. Journal of agricultural and food chemistry. 2002 Mar; 50(7):1991-5. doi: 10.1021/jf011043h. [PMID: 11902945]
  • A N Grechkin, L S Mukhtarova, M Hamberg. The lipoxygenase pathway in tulip (Tulipa gesneriana): detection of the ketol route. The Biochemical journal. 2000 Dec; 352 Pt 2(?):501-9. doi: . [PMID: 11085944]
  • M A Noordermeer, I Feussner, A Kolbe, G A Veldink, J F Vliegenthart. Oxygenation of (3Z)-alkenals to 4-hydroxy-(2E)-alkenals in plant extracts: a nonenzymatic process. Biochemical and biophysical research communications. 2000 Oct; 277(1):112-6. doi: 10.1006/bbrc.2000.3641. [PMID: 11027649]
  • B Rehbock, D Gansser, R G Berger. Analysis of oxylipins by high-performance liquid chromatography with evaporative light-scattering detection and particle beam-mass spectrometry. Lipids. 1997 Sep; 32(9):1003-10. doi: 10.1007/s11745-997-0130-0. [PMID: 9307943]
  • A N Grechkin, F N Fazliev, L S Mukhtarova. The lipoxygenase pathway in garlic (Allium sativum L.) bulbs: detection of the novel divinyl ether oxylipins. FEBS letters. 1995 Sep; 371(2):159-62. doi: 10.1016/0014-5793(95)00895-g. [PMID: 7672118]
  • E Fantini, L Demaison, E Sentex, A Grynberg, P Athias. Some biochemical aspects of the protective effect of trimetazidine on rat cardiomyocytes during hypoxia and reoxygenation. Journal of molecular and cellular cardiology. 1994 Aug; 26(8):949-58. doi: 10.1006/jmcc.1994.1116. [PMID: 7799450]
  • A L Wilcox, L J Marnett. Polyunsaturated fatty acid alkoxyl radicals exist as carbon-centered epoxyallylic radicals: a key step in hydroperoxide-amplified lipid peroxidation. Chemical research in toxicology. 1993 Jul; 6(4):413-6. doi: 10.1021/tx00034a003. [PMID: 8374035]
  • E Blée, A L Wilcox, L J Marnett, F Schuber. Mechanism of reaction of fatty acid hydroperoxides with soybean peroxygenase. The Journal of biological chemistry. 1993 Jan; 268(3):1708-15. doi: . [PMID: 8420948]
  • E. E. Farmer, C. A. Ryan. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. The Plant cell. 1992 Feb; 4(2):129-134. doi: 10.1105/tpc.4.2.129. [PMID: 12297644]
  • M Hamberg. Biosynthesis of 12-oxo-10,15(Z)-phytodienoic acid: identification of an allene oxide cyclase. Biochemical and biophysical research communications. 1988 Oct; 156(1):543-50. doi: 10.1016/s0006-291x(88)80876-3. [PMID: 3178850]