Pectolinarin (BioDeep_00000230503)
Secondary id: BioDeep_00000182146
natural product PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C29H34O15 (622.1897614000001)
中文名称: 大蓟苷, 柳穿鱼叶苷, 柳穿鱼苷
谱图信息:
最多检出来源 Chinese Herbal Medicine(otcml) 1.35%
分子结构信息
SMILES: c(c3)(c1c(c(c3OC(O4)C(O)C(O)C(O)C(COC(O5)C(O)C(C(C5C)O)O)4)OC)O)OC(c(c2)ccc(OC)c2)=CC1=O
InChI: InChI=1S/C29H34O15/c1-11-20(31)23(34)25(36)28(41-11)40-10-18-21(32)24(35)26(37)29(44-18)43-17-9-16-19(22(33)27(17)39-3)14(30)8-15(42-16)12-4-6-13(38-2)7-5-12/h4-9,11,18,20-21,23-26,28-29,31-37H,10H2,1-3H3/t11-,18+,20-,21+,23+,24-,25+,26+,28+,29+/m0/s1
描述信息
Pectolinarin is a disaccharide derivative that consists of pectolinarigenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an apoptosis inducer, an anti-inflammatory agent, a plant metabolite, an antineoplastic agent, an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor and an antioxidant. It is a dimethoxyflavone, a rutinoside, a glycosyloxyflavone, a disaccharide derivative and a monohydroxyflavanone. It is functionally related to a pectolinarigenin.
Pectolinarin is a natural product found in Kickxia elatine, Scoparia dulcis, and other organisms with data available.
See also: Trifolium pratense flower (part of).
A disaccharide derivative that consists of pectolinarigenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage.
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.003
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.997
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.998
Pectolinarin possesses anti-inflammatory activity[1]. Pectolinarin inhibits secretion of IL-6 and IL-8, as well as the production of PGE2 and NO. Pectolinarin suppresses cell proliferation and inflammatory response and induces apoptosis via inactivation of the PI3K/Akt pathway[2].
Pectolinarin possesses anti-inflammatory activity[1]. Pectolinarin inhibits secretion of IL-6 and IL-8, as well as the production of PGE2 and NO. Pectolinarin suppresses cell proliferation and inflammatory response and induces apoptosis via inactivation of the PI3K/Akt pathway[2].
同义名列表
20 个代谢物同义名
5-hydroxy-6-methoxy-2-(4-methoxyphenyl)-7-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-oxanyl]oxymethyl]-2-oxanyl]oxy]-1-benzopyran-4-one; Pectolinarin; 5-hydroxy-6-methoxy-2-(4-methoxyphenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one; 4H-1-BENZOPYRAN-4-ONE, 7-((6-O-(6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL)-.BETA.-D-GLUCOPYRANOSYL)OXY)-5-HYDROXY-6-METHOXY-2-(4-METHOXYPHENYL)-; 7-((6-O-(6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL)-.BETA.-D-GLUCOPYRANOSYL)OXY)-5-HYDROXY-6-METHOXY-2-(4-METHOXYPHENYL)-4H-1-BENZOPYRAN-4-ONE; 4H-1-Benzopyran-4-one, 7-[[6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl]oxy]-5-hydroxy-6-methoxy-2-(4-methoxyphenyl)-; 4H-1-Benzopyran-4-one, 7-((6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-5-hydroxy-6-methoxy-2-(4-methoxyphenyl)-; 7-((6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-5-hydroxy-6-methoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one; 5-hydroxy-6-methoxy-2-(4-methoxyphenyl)-4-oxo-4H-1-benzopyran-7-yl 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside; 4H-1-Benzopyran-4-one, 7-[[6-O-(6-deoxy-a-L-mannopyranosyl)-ss-D-glucopyranosyl]oxy]-5-hydroxy-6-methoxy-2-(4-methoxyphenyl)-; 5-hydroxy-6-methoxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-yl 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside; 5-Hydroxy-6-methoxy-2-(4-methoxyphenyl)-4-oxo-4H-1-benzopyran-7-yl 6-O-(6-deoxyhexopyranosyl)hexopyranoside; pectolinarigenin-7-O-rutinoside; PECTOLINARIN [INCI]; UNII-BY44L9O1RR; Pectolinaroside; BY44L9O1RR; 7- [ [ 6-O- (6-Deoxy-alpha-L-mannopyranosyl) -beta-D-glucopyranosyl ] oxy ] -5-hydroxy-6-methoxy-2- (4-methoxyphenyl) -4H-1-benzopyran-4-one; pectolinarigenin 7-O-rutinoside; Pectolinarigenin 7-rutinoside
数据库引用编号
46 个数据库交叉引用编号
- ChEBI: CHEBI:109534
- ChEBI: CHEBI:156327
- PubChem: 6708644
- PubChem: 90470831
- PubChem: 168849
- PubChem: 75990040
- Metlin: METLIN43640
- ChEMBL: CHEMBL445978
- Wikipedia: Pectolinarin
- MeSH: pectolinarin
- ChemIDplus: 0028978021
- KNApSAcK: C00004240
- chemspider: 147700
- CAS: 134-33-8
- CAS: 28978-02-1
- MoNA: VF-NPL-QTOF009253
- MoNA: VF-NPL-QTOF009252
- MoNA: VF-NPL-QTOF009251
- MoNA: VF-NPL-QTOF009250
- MoNA: VF-NPL-QTOF009249
- MoNA: VF-NPL-QTOF009248
- MoNA: VF-NPL-QTOF009247
- MoNA: VF-NPL-QTOF009246
- MoNA: VF-NPL-QTOF009245
- MoNA: VF-NPL-QEHF014553
- MoNA: VF-NPL-QEHF014552
- MoNA: VF-NPL-QEHF014551
- MoNA: VF-NPL-QEHF014550
- MoNA: VF-NPL-QEHF014549
- MoNA: VF-NPL-QEHF014548
- MoNA: BML81907
- MoNA: BML81906
- MoNA: BML81905
- MoNA: BML01634
- MoNA: BML01626
- MoNA: BML01618
- MoNA: BML01609
- MoNA: BML01600
- MoNA: BML01591
- MoNA: TY000155
- MoNA: TY000154
- medchemexpress: HY-N0314
- PMhub: MS000204523
- PMhub: MS000002808
- Flavonoid: FL3FEAGS0024
- MetaboLights: MTBLC156327
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
2 个相关的物种来源信息
- 33090 - Plants: -
- 33090 - 大蓟: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Qi Qi Pang, Ji Hyun Kim, Hyun Young Kim, Ji-Hyun Kim, Eun Ju Cho. Protective Effects and Mechanisms of Pectolinarin against H2O2-Induced Oxidative Stress in SH-SY5Y Neuronal Cells.
Molecules (Basel, Switzerland).
2023 Aug; 28(15):. doi:
10.3390/molecules28155826
. [PMID: 37570795] - Yana Ye, Zhenlin Chen, Yonglin Wu, Mengmeng Gao, Anqi Zhu, Xinyuan Kuai, Duosheng Luo, Yanfen Chen, Kunping Li. Purification Process and In Vitro and In Vivo Bioactivity Evaluation of Pectolinarin and Linarin from Cirsium japonicum.
Molecules (Basel, Switzerland).
2022 Dec; 27(24):. doi:
10.3390/molecules27248695
. [PMID: 36557828] - Dinesh K Patel. Biological Importance, Therapeutic Benefit and Analytical Aspects of Bioactive Flavonoid Pectolinarin in the Nature.
Drug metabolism letters.
2021; 14(2):117-125. doi:
10.2174/1872312814666210726112910
. [PMID: 34313205] - Namrta Choudhry, Xin Zhao, Dan Xu, Mark Zanin, Weisan Chen, Zifeng Yang, Jianxin Chen. Chinese Therapeutic Strategy for Fighting COVID-19 and Potential Small-Molecule Inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).
Journal of medicinal chemistry.
2020 11; 63(22):13205-13227. doi:
10.1021/acs.jmedchem.0c00626
. [PMID: 32845145] - Sullim Lee, Da-Hye Lee, Jin-Chul Kim, Byung Hun Um, Sang Hyun Sung, Lak Shin Jeong, Yong Kee Kim, Su-Nam Kim. Pectolinarigenin, an aglycone of pectolinarin, has more potent inhibitory activities on melanogenesis than pectolinarin.
Biochemical and biophysical research communications.
2017 11; 493(1):765-772. doi:
10.1016/j.bbrc.2017.08.106
. [PMID: 28851651] - Thamere Cheriet, Mourad Hanfer, Amel Boudjelal, Nadir Baali, Ines Mancini, Ramdane Seghiri, Souad Ameddah, Ahmed Menad, Fadila Benayache, Samir Benayache. Glycosyl flavonoid profile, in vivo antidiabetic and in vitro antioxidant properties of Linaria reflexa Desf.
Natural product research.
2017 Sep; 31(17):2042-2048. doi:
10.1080/14786419.2016.1274889
. [PMID: 28032514] - Qing Liu, Qi-Ming Yang, Hai-Jun Hu, Li Yang, Ying-Bo Yang, Gui-Xin Chou, Zheng-Tao Wang. Bioactive diterpenoids and flavonoids from the aerial parts of Scoparia dulcis.
Journal of natural products.
2014 Jul; 77(7):1594-600. doi:
10.1021/np500150f
. [PMID: 24955889] - Zhiyong Liao, Zhihua Wu, Mingjiang Wu. Cirsium japonicum flavones enhance adipocyte differentiation and glucose uptake in 3T3-L1 cells.
Biological & pharmaceutical bulletin.
2012; 35(6):855-60. doi:
10.1248/bpb.35.855
. [PMID: 22687475] - Zhiyong Liao, Xiaoli Chen, Mingjiang Wu. Antidiabetic effect of flavones from Cirsium japonicum DC in diabetic rats.
Archives of pharmacal research.
2010 Mar; 33(3):353-62. doi:
10.1007/s12272-010-0302-6
. [PMID: 20361298] - Yong-hai Meng, Qiu-hong Wang, Hai Jiang, Bing-you Yang, Hai-xue Kuang. [Study on chemical constituents of Herba Cirsii].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2009 Jan; 32(1):58-61. doi:
. [PMID: 19445122]
- Yeong-Min Yoo, Jung-Hwan Nam, Min-Young Kim, Jongwon Choi, Hee-Juhn Park. Pectolinarin and Pectolinarigenin of Cirsium setidens Prevent the Hepatic Injury in Rats Caused by D-Galactosamine via an Antioxidant Mechanism.
Biological & pharmaceutical bulletin.
2008 Apr; 31(4):760-4. doi:
10.1248/bpb.31.760
. [PMID: 18379079] - H Ishida, T Umino, K Tsuji, T Kosuge. Studies on antihemorrhagic substances in herbs classified as hemostatics in Chinese medicine. VII. On the antihemorrhagic principle in Cirsium japonicum DC.
Chemical & pharmaceutical bulletin.
1987 Feb; 35(2):861-4. doi:
10.1248/cpb.35.861
. [PMID: 3594697] - H WAGNER, L HOERHAMMER, W KIRCHNER. [On the additional occurrence of pectolinarin and linarin in the plant kingdom. I. On the Compositae and Papilionaceae flavones].
Archiv der Pharmazie und Berichte der Deutschen Pharmazeutischen Gesellschaft.
1960 Dec; 293/65(?):1053-62. doi:
10.1002/ardp.19602931205
. [PMID: 13782492]