ent-Gallocatechin 3-gallate (BioDeep_00000017293)
Secondary id: BioDeep_00000036380, BioDeep_00000171943, BioDeep_00000403044
human metabolite PANOMIX_OTCML-2023 Volatile Flavor Compounds
代谢物信息卡片
化学式: C22H18O11 (458.0849078)
中文名称: 没食子儿茶素没食子酸酯, (-)-没食子酸儿茶素没食子酸酯
谱图信息:
最多检出来源 Viridiplantae(plant) 0.26%
分子结构信息
SMILES: C1C(C(OC2=CC(=CC(=C21)O)O)C3=CC(=C(C(=C3)O)O)O)OC(=O)C4=CC(=C(C(=C4)O)O)O
InChI: InChI=1S/C22H18O11/c23-10-5-12(24)11-7-18(33-22(31)9-3-15(27)20(30)16(28)4-9)21(32-17(11)6-10)8-1-13(25)19(29)14(26)2-8/h1-6,18,21,23-30H,7H2/t18-,21+/m1/s1
描述信息
(-)-gallocatechin gallate is a gallate ester obtained by formal condensation of the carboxy group of gallic acid with the (3R)-hydroxy group of (-)-gallocatechin. A natural product found in found in green tea. It has a role as an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor, a human xenobiotic metabolite, an antineoplastic agent and a plant metabolite. It is a gallate ester, a polyphenol and a catechin. It is functionally related to a (-)-gallocatechin and a gallic acid. It is an enantiomer of a (+)-gallocatechin gallate.
(-)-Gallocatechin gallate is a natural product found in Senegalia catechu, Paeonia lactiflora, and other organisms with data available.
Ent-gallocatechin 3-gallate, also known as (-)-gallocatechol gallic acid, is a member of the class of compounds known as catechin gallates. Catechin gallates are organic compounds containing a gallate moiety glycosidically linked to a catechin. Ent-gallocatechin 3-gallate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Ent-gallocatechin 3-gallate can be found in tea, which makes ent-gallocatechin 3-gallate a potential biomarker for the consumption of this food product.
A gallate ester obtained by formal condensation of the carboxy group of gallic acid with the (3R)-hydroxy group of (-)-gallocatechin. A natural product found in found in green tea.
(-)-Gallocatechin gallate is the polyphenol isolated from tea, with cancer-preventive activities.
(-)-Gallocatechin gallate is the polyphenol isolated from tea, with cancer-preventive activities.
(-)-Gallocatechin gallate is the polyphenol isolated from tea, with cancer-preventive activities.
(-)-Gallocatechin gallate is the polyphenol isolated from tea, with cancer-preventive activities.
同义名列表
41 个代谢物同义名
Benzoic acid, 3,4,5-trihydroxy-, 3,4-dihydro-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-2H-1-benzopyran-3-yl ester, (2S-trans)-; BENZOIC ACID, 3,4,5-TRIHYDROXY-, (2S,3R)-3,4-DIHYDRO-5,7-DIHYDROXY-2-(3,4,5-TRIHYDROXYPHENYL)-2H-1-BENZOPYRAN-3-YL ESTER; (2S,3R)-5,7-Dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3-yl 3,4,5-trihydroxybenzoic acid; (2S,3R)-2-(3,4,5-Trihydroxyphenyl)-3,4-dihydro-1(2H)-benzopyran-3,5,7-triol 3-(3,4,5-trihydroxybenzoic acid); (2S,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3-yl 3,4,5-trihydroxybenzoate; (2S,3R)-2-(3,4,5-Trihydroxyphenyl)-3,4-dihydro-1(2H)-benzopyran-3,5,7-triol 3-(3,4,5-trihydroxybenzoate); [(2S,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl] 3,4,5-trihydroxybenzoate; (2S,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl 3,4,5-trihydroxybenzoate; (2S,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)chroman-3-yl 3,4,5-trihydroxybenzoate; (2S,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)chroman-3-yl3,4,5-trihydroxybenzoate; (-)-Gallocatechin gallate, from green tea, >=98\\% (HPLC); (-)-Gallocatechin gallate, analytical standard; (-)-Gallocatechin-3-O-gallic acid; ent-Gallocatechin 3-gallic acid; Gallocatechol, 3-gallate, (-)-; (-)-Gallocatechin 3-O-gallate; (-)-Gallocatechin gallic acid; (-)-gallocatechin-3-O-gallate; (-)-Gallocatechol gallic acid; ent-Gallocatechin 3-gallate; Gallocatechin gallate (Gcg); Gallocatechin gallate, (-)-; (-)-Gallocatechin 3-gallate; Gallocatechingallate(-GCG); (-)-Gallocatechin gallate; (-)-Gallocatechol gallate; Gallocatechin-3-gallate; Gallocatechin gallate; (-)-Gallocatechin; UNII-IRW3C4Y31Q; IRW3C4Y31Q; L-GCG; GCG; 3,4,5-trihydroxybenzoic acid [(2S,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3-chromanyl] ester; 3,4,5-trihydroxybenzoic acid [(2S,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)chroman-3-yl] ester; [(2S,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)chroman-3-yl] 3,4,5-trihydroxybenzoate; Gallocatechol, 3-gallate, (-)- (8CI); (−)-Gallocatechin gallate; G6782_SIGMA; 4233-96-9; Norethindrone
数据库引用编号
18 个数据库交叉引用编号
- ChEBI: CHEBI:156271
- ChEBI: CHEBI:95002
- PubChem: 199472
- HMDB: HMDB0301673
- ChEMBL: CHEMBL264938
- Wikipedia: Gallocatechin_gallate
- ChemIDplus: 0004233969
- foodb: FDB000095
- chemspider: 172662
- CAS: 4233-96-9
- CAS: 68-22-4
- medchemexpress: HY-N0522
- MetaboLights: MTBLC156271
- KEGG: C05028
- PubChem: 7499
- KNApSAcK: 7627
- LOTUS: LTS0215651
- wikidata: Q27166763
分类词条
相关代谢途径
Reactome(0)
代谢反应
3 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(1)
- galloylated catechin biosynthesis:
(-)-epicatechin + 1-O-galloyl-β-D-glucose ⟶ (-)-epicatechin-3-O-gallate + D-glucopyranose
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(2)
- galloylated catechin biosynthesis:
(-)-epicatechin + 1-O-galloyl-β-D-glucose ⟶ (-)-epicatechin-3-O-gallate + D-glucopyranose
- galloylated catechin biosynthesis:
UDP-α-D-glucose + gallate ⟶ 1-O-galloyl-β-D-glucose + UDP
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
9 个相关的物种来源信息
- 4442 - Camellia sinensis: 10.1248/BPB.18.683
- 9606 - Homo sapiens: -
- 35924 - Paeonia lactiflora: 10.1016/J.JPBA.2014.10.020
- 33090 - Plants: -
- 57940 - Potentilla erecta: 10.1007/BF00597729
- 138017 - Senegalia catechu: 10.1021/JF0531499
- 875646 - Senegalia polyacantha: 10.1021/JF0531499
- 33090 - 矮地茶: -
- 33090 - 茶: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Ting Xiao, Mengqi Cui, Caijuan Zheng, Peipei Zhang, Shanfa Ren, Jiali Bao, Dandi Gao, Ronghao Sun, Ming Wang, Jianping Lin, Liang Zhang, Mingjiang Li, Dongmei Li, Honggang Zhou, Cheng Yang. Both Baicalein and Gallocatechin Gallate Effectively Inhibit SARS-CoV-2 Replication by Targeting Mpro and Sepsis in Mice.
Inflammation.
2022 Jun; 45(3):1076-1088. doi:
10.1007/s10753-021-01602-z
. [PMID: 34822072] - Ying-Qi Wang, Qing-Sheng Li, Xin-Qiang Zheng, Jian-Liang Lu, Yue-Rong Liang. Antiviral Effects of Green Tea EGCG and Its Potential Application against COVID-19.
Molecules (Basel, Switzerland).
2021 Jun; 26(13):. doi:
10.3390/molecules26133962
. [PMID: 34209485] - Ming Zhao, Yu Yu, Li-Ming Sun, Jia-Qing Xing, Tingting Li, Yunkai Zhu, Miao Wang, Yin Yu, Wen Xue, Tian Xia, Hong Cai, Qiu-Ying Han, Xiaoyao Yin, Wei-Hua Li, Ai-Ling Li, Jiuwei Cui, Zhenghong Yuan, Rong Zhang, Tao Zhou, Xue-Min Zhang, Tao Li. GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein.
Nature communications.
2021 04; 12(1):2114. doi:
10.1038/s41467-021-22297-8
. [PMID: 33837182] - Namrta Choudhry, Xin Zhao, Dan Xu, Mark Zanin, Weisan Chen, Zifeng Yang, Jianxin Chen. Chinese Therapeutic Strategy for Fighting COVID-19 and Potential Small-Molecule Inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).
Journal of medicinal chemistry.
2020 11; 63(22):13205-13227. doi:
10.1021/acs.jmedchem.0c00626
. [PMID: 32845145] - Leandro Rocha Silva, Paulo Fernando da Silva Santos-Júnior, Júlia de Andrade Brandão, Letícia Anderson, Ênio José Bassi, João Xavier de Araújo-Júnior, Sílvia Helena Cardoso, Edeildo Ferreira da Silva-Júnior. Druggable targets from coronaviruses for designing new antiviral drugs.
Bioorganic & medicinal chemistry.
2020 11; 28(22):115745. doi:
10.1016/j.bmc.2020.115745
. [PMID: 33007557] - Bihui Liu, Jing Zhang, Peng Sun, Ruokun Yi, Xiaoyan Han, Xin Zhao. Raw Bowl Tea (Tuocha) Polyphenol Prevention of Nonalcoholic Fatty Liver Disease by Regulating Intestinal Function in Mice.
Biomolecules.
2019 09; 9(9):. doi:
10.3390/biom9090435
. [PMID: 31480575] - Aleksandra Golonko, Tomasz Pienkowski, Renata Swislocka, Ryszard Lazny, Marek Roszko, Wlodzimierz Lewandowski. Another look at phenolic compounds in cancer therapy the effect of polyphenols on ubiquitin-proteasome system.
European journal of medicinal chemistry.
2019 Apr; 167(?):291-311. doi:
10.1016/j.ejmech.2019.01.044
. [PMID: 30776692] - Bo Chen, Jie Zhou, Qilu Meng, Yang Zhang, Shihua Zhang, Liang Zhang. Comparative analysis of fecal phenolic content between normal and obese rats after oral administration of tea polyphenols.
Food & function.
2018 Sep; 9(9):4858-4864. doi:
10.1039/c8fo00609a
. [PMID: 30156246] - Yunru Peng, Qilu Meng, Jie Zhou, Bo Chen, Junjun Xi, Piaopiao Long, Liang Zhang, Ruyan Hou. Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats.
Food chemistry.
2018 Mar; 242(?):527-532. doi:
10.1016/j.foodchem.2017.09.094
. [PMID: 29037724] - Rakesh Jaiswal, Lalith Jayasinghe, Nikolai Kuhnert. Identification and characterization of proanthocyanidins of 16 members of the Rhododendron genus (Ericaceae) by tandem LC-MS.
Journal of mass spectrometry : JMS.
2012 Apr; 47(4):502-15. doi:
10.1002/jms.2954
. [PMID: 22689627] - Yong-Quan Xu, Gen-Sheng Chen, Qiu-Shuang Wang, Hai-Bo Yuan, Chun-Hong Feng, Jun-Feng Yin. Irreversible sediment formation in green tea infusions.
Journal of food science.
2012 Mar; 77(3):C298-302. doi:
10.1111/j.1750-3841.2011.02583.x
. [PMID: 22329921] - Yixiang Wang, Qing Li, Qian Wang, Yujiao Li, Junhong Ling, Lili Liu, Xiaohui Chen, Kaishun Bi. Simultaneous determination of seven bioactive components in Oolong tea Camellia sinensis: quality control by chemical composition and HPLC fingerprints.
Journal of agricultural and food chemistry.
2012 Jan; 60(1):256-60. doi:
10.1021/jf204312w
. [PMID: 22098505] - Manar M Salem, Frederick H Davidorf, Mohamed H Abdel-Rahman. In vitro anti-uveal melanoma activity of phenolic compounds from the Egyptian medicinal plant Acacia nilotica.
Fitoterapia.
2011 Dec; 82(8):1279-84. doi:
10.1016/j.fitote.2011.08.020
. [PMID: 21903153] - Jianbo Xiao, Muxia Wu, Guoyin Kai, Feijiu Wang, Hui Cao, Xibin Yu. ZnO-ZnS QDs interfacial heterostructure for drug and food delivery application: enhancement of the binding affinities of flavonoid aglycones to bovine serum albumin.
Nanomedicine : nanotechnology, biology, and medicine.
2011 Dec; 7(6):850-8. doi:
10.1016/j.nano.2011.02.003
. [PMID: 21371570] - Byung Il Yoon, U-Syn Ha, Dong Wan Sohn, Seung-Ju Lee, Hyun Woo Kim, Chang Hee Han, Choong Bum Lee, Yong-Hyun Cho. Anti-inflammatory and antimicrobial effects of nanocatechin in a chronic bacterial prostatitis rat model.
Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.
2011 Apr; 17(2):189-94. doi:
10.1007/s10156-010-0098-9
. [PMID: 20694569] - Mon-Yuan Yang, Chien-Ning Huang, Kuei-Chuan Chan, Yi-Sun Yang, Chiung-Huei Peng, Chau-Jong Wang. Mulberry leaf polyphenols possess antiatherogenesis effect via inhibiting LDL oxidation and foam cell formation.
Journal of agricultural and food chemistry.
2011 Mar; 59(5):1985-95. doi:
10.1021/jf103661v
. [PMID: 21314155] - Alfred Zoechling, Falk Liebner, Alois Jungbauer. Red wine: a source of potent ligands for peroxisome proliferator-activated receptor γ.
Food & function.
2011 Jan; 2(1):28-38. doi:
10.1039/c0fo00086h
. [PMID: 21773583] - Takayuki Maruyama, Takaaki Tomofuji, Yasumasa Endo, Koichiro Irie, Tetsuji Azuma, Daisuke Ekuni, Naofumi Tamaki, Tatsuo Yamamoto, Manabu Morita. Supplementation of green tea catechins in dentifrices suppresses gingival oxidative stress and periodontal inflammation.
Archives of oral biology.
2011 Jan; 56(1):48-53. doi:
10.1016/j.archoralbio.2010.08.015
. [PMID: 20869695] - Chwan-Li Shen, Ming-Chien Chyu, Barbara C Pence, James K Yeh, Yan Zhang, Carol K Felton, Susan Doctolero, Jia-Sheng Wang. Green tea polyphenols supplementation and Tai Chi exercise for postmenopausal osteopenic women: safety and quality of life report.
BMC complementary and alternative medicine.
2010 Dec; 10(?):76. doi:
10.1186/1472-6882-10-76
. [PMID: 21143878] - C T Ranjith-Kumar, Yvonne Lai, Robert T Sarisky, C Cheng Kao. Green tea catechin, epigallocatechin gallate, suppresses signaling by the dsRNA innate immune receptor RIG-I.
PloS one.
2010 Sep; 5(9):e12878. doi:
10.1371/journal.pone.0012878
. [PMID: 20877565] - Mark Lehnert, Henrik Lind, Zhi Zhong, Robert Schoonhoven, Ingo Marzi, John J Lemasters. Polyphenols of Camellia sinenesis decrease mortality, hepatic injury and generation of cytokines and reactive oxygen and nitrogen species after hemorrhage/resuscitation in rats.
BMC complementary and alternative medicine.
2010 Aug; 10(?):46. doi:
10.1186/1472-6882-10-46
. [PMID: 20735845] - Yunbao Liu, Muraleedharan G Nair. An efficient and economical MTT assay for determining the antioxidant activity of plant natural product extracts and pure compounds.
Journal of natural products.
2010 Jul; 73(7):1193-5. doi:
10.1021/np1000945
. [PMID: 20565070] - Kuei-Chuan Chan, Hsieh-Hsun Ho, Chien-Ning Huang, Ming-Cheng Lin, Hsiang-Mei Chen, Chau-Jong Wang. Mulberry leaf extract inhibits vascular smooth muscle cell migration involving a block of small GTPase and Akt/NF-kappaB signals.
Journal of agricultural and food chemistry.
2009 Oct; 57(19):9147-53. doi:
10.1021/jf902507k
. [PMID: 19761240] - Chwan-Li Shen, Ming-Chien Chyu, James K Yeh, Carol K Felton, Ke T Xu, Barbara C Pence, Jia-Sheng Wang. Green tea polyphenols and Tai Chi for bone health: designing a placebo-controlled randomized trial.
BMC musculoskeletal disorders.
2009 Sep; 10(?):110. doi:
10.1186/1471-2474-10-110
. [PMID: 19732445] - Bor-Ru Lin, Chia-Jung Yu, Wang-Chuan Chen, Hsuan-Shu Lee, Huei-Min Chang, Yen-Chih Lee, Chiang-Ting Chien, Chau-Fong Chen. Green tea extract supplement reduces D-galactosamine-induced acute liver injury by inhibition of apoptotic and proinflammatory signaling.
Journal of biomedical science.
2009 Mar; 16(?):35. doi:
10.1186/1423-0127-16-35
. [PMID: 19317920] - Angelika S Rambold, Margit Miesbauer, Diana Olschewski, Ralf Seidel, Constanze Riemer, Lindsay Smale, Lisa Brumm, Michal Levy, Ehud Gazit, Dieter Oesterhelt, Michael Baier, Christian F W Becker, Martin Engelhard, Konstanze F Winklhofer, Jörg Tatzelt. Green tea extracts interfere with the stress-protective activity of PrP and the formation of PrP.
Journal of neurochemistry.
2008 Oct; 107(1):218-29. doi:
10.1111/j.1471-4159.2008.05611.x
. [PMID: 18691383] - Sang Min Lee, Chae Wook Kim, Jung Kee Kim, Hyun Jung Shin, Joo Hyun Baik. GCG-rich tea catechins are effective in lowering cholesterol and triglyceride concentrations in hyperlipidemic rats.
Lipids.
2008 May; 43(5):419-29. doi:
10.1007/s11745-008-3167-4
. [PMID: 18365267] - Emily D Niemeyer, Jennifer S Brodbelt. Isomeric differentiation of green tea catechins using gas-phase hydrogen/deuterium exchange reactions.
Journal of the American Society for Mass Spectrometry.
2007 Oct; 18(10):1749-59. doi:
10.1016/j.jasms.2007.07.009
. [PMID: 17702600] - I Medina, J M Gallardo, M J Gonzalez, S Lois, N Hedges. Effect of molecular structure of phenolic families as hydroxycinnamic acids and catechins on their antioxidant effectiveness in minced fish muscle.
Journal of agricultural and food chemistry.
2007 May; 55(10):3889-95. doi:
10.1021/jf063498i
. [PMID: 17451250] - Akira Kotani, Kouji Takahashi, Hideki Hakamata, Satoshi Kojima, Fumiyo Kusu. Attomole catechins determination by capillary liquid chromatography with electrochemical detection.
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.
2007 Feb; 23(2):157-63. doi:
10.2116/analsci.23.157
. [PMID: 17297226] - Marlène Backleh-Sohrt, Perihan Ekici, Guenter Leupold, Harun Parlar. Efficiency of foam fractionation for the enrichment of nonpolar compounds from aqueous extracts of plant materials.
Journal of natural products.
2005 Sep; 68(9):1386-9. doi:
10.1021/np049743e
. [PMID: 16180819] - M Okamoto, A Sugimoto, K-P Leung, K Nakayama, A Kamaguchi, N Maeda. Inhibitory effect of green tea catechins on cysteine proteinases in Porphyromonas gingivalis.
Oral microbiology and immunology.
2004 Apr; 19(2):118-20. doi:
10.1046/j.0902-0055.2003.00112.x
. [PMID: 14871352] - D James Morré, Dorothy M Morré, Howard Sun, Raymond Cooper, Joseph Chang, Elsa M Janle. Tea catechin synergies in inhibition of cancer cell proliferation and of a cancer specific cell surface oxidase (ECTO-NOX).
Pharmacology & toxicology.
2003 May; 92(5):234-41. doi:
10.1034/j.1600-0773.2003.920506.x
. [PMID: 12753411] - Massimo Donà, Isabella Dell'Aica, Fiorella Calabrese, Roberto Benelli, Monica Morini, Adriana Albini, Spiridione Garbisa. Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis.
Journal of immunology (Baltimore, Md. : 1950).
2003 Apr; 170(8):4335-41. doi:
10.4049/jimmunol.170.8.4335
. [PMID: 12682270] - Junei Kinjo, Tsuneatsu Nagao, Takashi Tanaka, Gen-ichiro Nonaka, Masafumi Okawa, Toshihiro Nohara, Hikaru Okabe. Activity-guided fractionation of green tea extract with antiproliferative activity against human stomach cancer cells.
Biological & pharmaceutical bulletin.
2002 Sep; 25(9):1238-40. doi:
10.1248/bpb.25.1238
. [PMID: 12230128] - Pascale Sarni-Manchado, Véronique Cheynier. Study of non-covalent complexation between catechin derivatives and peptides by electrospray ionization mass spectrometry.
Journal of mass spectrometry : JMS.
2002 Jun; 37(6):609-16. doi:
10.1002/jms.321
. [PMID: 12112743] - Takako Nakagawa, Takako Yokozawa, Katsutoshi Terasawa, Seiji Shu, Lekh Raj Juneja. Protective activity of green tea against free radical- and glucose-mediated protein damage.
Journal of agricultural and food chemistry.
2002 Apr; 50(8):2418-22. doi:
10.1021/jf011339n
. [PMID: 11929306] - J H Kim, S I Kim, K S Song. Prolyl endopeptidase inhibitors from green tea.
Archives of pharmacal research.
2001 Aug; 24(4):292-6. doi:
10.1007/bf02975094
. [PMID: 11534759] - M R Sartippour, D Heber, J Ma, Q Lu, V L Go, M Nguyen. Green tea and its catechins inhibit breast cancer xenografts.
Nutrition and cancer.
2001; 40(2):149-56. doi:
10.1207/s15327914nc402_11
. [PMID: 11962250] - B Yang, K Arai, F Kusu. Determination of catechins in human urine subsequent to tea ingestion by high-performance liquid chromatography with electrochemical detection.
Analytical biochemistry.
2000 Jul; 283(1):77-82. doi:
10.1006/abio.2000.4624
. [PMID: 10929811] - S S Huang, S F Yeh, C Y Hong. Effect of anthraquinone derivatives on lipid peroxidation in rat heart mitochondria: structure-activity relationship.
Journal of natural products.
1995 Sep; 58(9):1365-71. doi:
10.1021/np50123a005
. [PMID: 7494143] - L Giuliani, G Carmignani, E Belgrano, P Puppo. Transcatheter arterial embolization in urological tumors: the use of isobutyl-2-cyanoacrylate.
The Journal of urology.
1979 May; 121(5):630-4. doi:
10.1016/s0022-5347(17)56913-x
. [PMID: 439260] - A W Mondorf. [Evidence of urinary tubular proteins in inflammatory and toxic kidney damage].
Wiener medizinische Wochenschrift. Supplement.
1975; 27(?):20-3. doi:
NULL
. [PMID: 5816]