Reaction Process: WikiPathways:WP497

Urea cycle and metabolism of amino groups related metabolites

find 2 related metabolites which is associated with chemical reaction(pathway) Urea cycle and metabolism of amino groups

(S)-1-Pyrroline-5-carboxylate ⟶ L-Proline

1-Pyrroline-5-carboxylic acid

delta-1-Pyrroline-5-carboxylate, 14C-labeled, (+-)-isomer

C5H7NO2 (113.0476762)


1-Pyrroline-5-carboxylic acid (CAS: 2906-39-0) is an enamine or an imino acid that forms upon the spontaneous dehydration of L-glutamate gamma-semialdehyde in aqueous solutions. The stereoisomer (S)-1-pyrroline-5-carboxylate is an intermediate in glutamate metabolism, arginine degradation, and proline biosynthesis and degradation. It can also be converted into or be formed from three amino acids: L-glutamate, L-ornithine, and L-proline. In particular, it is synthesized via the oxidation of proline by pyrroline-5-carboxylate reductase 1 (PYCR1) (EC 1.5.1.2) or by proline dehydrogenase (PRODH) (EC 1.5.99.8). It is hydrolyzed into L-glutamate by delta-1-pyrroline-5-carboxylate dehydrogenase (ALDH4A1) (EC 1.5.1.12). It is also one of the few metabolites that can act as a precursor to other metabolites of both the urea cycle and the tricarboxylic acid (TCA) cycle. Under certain conditions, pyrroline-5-carboxylate can act as a neurotoxin and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyrroline-5-carboxylate are associated with at least five inborn errors of metabolism, including hyperprolinemia type I, hyperprolinemia type II, iminoglycinuria, prolinemia type II, and pyruvate carboxylase deficiency. Hyperprolinemia type II results in high levels of pyrroline-5-carboxylate. People with hyperprolinemia type II have signs and symptoms that vary in severity, but they are more likely than type I to have seizures or intellectual disability. Pyrroline-5-carboxylate is highly reactive and excess quantities have been shown to cause cell death and apoptosis (PMID: 15548746). (s)-1-pyrroline-5-carboxylate, also known as delta-1-pyrroline-5-carboxylate, (+-)-isomer, belongs to alpha amino acids and derivatives class of compounds. Those are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof (s)-1-pyrroline-5-carboxylate is soluble (in water) and a moderately acidic compound (based on its pKa). (s)-1-pyrroline-5-carboxylate can be found in a number of food items such as beech nut, mango, oyster mushroom, and other bread, which makes (s)-1-pyrroline-5-carboxylate a potential biomarker for the consumption of these food products (s)-1-pyrroline-5-carboxylate may be a unique E.coli metabolite.

   

L-Glutamic gamma-semialdehyde

Glutamic acid gamma-semialdehyde, (L)-isomer

C5H9NO3 (131.0582404)


L-glutamic-gamma-semialdehyde, also known as 5-oxo-L-norvaline or glutamic acid gamma-semialdehyde, (L)-isomer, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-glutamic-gamma-semialdehyde is soluble (in water) and a moderately acidic compound (based on its pKa). L-glutamic-gamma-semialdehyde can be found in a number of food items such as rubus (blackberry, raspberry), jackfruit, loganberry, and plains prickly pear, which makes L-glutamic-gamma-semialdehyde a potential biomarker for the consumption of these food products. L-glutamic-gamma-semialdehyde exists in all living species, ranging from bacteria to humans. In humans, L-glutamic-gamma-semialdehyde is involved in the arginine and proline metabolism. L-glutamic-gamma-semialdehyde is also involved in several metabolic disorders, some of which include hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], prolidase deficiency (PD), arginine: glycine amidinotransferase deficiency (AGAT deficiency), and ornithine aminotransferase deficiency (OAT deficiency). Glutamic gamma-semialdehyde is the metabolic precursor for proline biosynthesis. The conversion from L-Glutamate, an ATP- and NADPH-dependent reaction, is catalyzed by the enzyme Delta-1-pyrroline-5-carboxylate synthetase (P5CS) (OMIM 138250). L-Glutamic-gamma-semialdehyde can also be converted to or be formed from the amino acids L-ornithine (EC 2.6.1.13) and L-proline (EC 1.5.99.8 and EC 1.5.1.2). It is also one of the few metabolites that can be a precursor to other metabolites of both the urea cycle and the citric acid cycle (BioCyc).