Reaction Process: Plant Reactome:R-OSA-1119451

Xylose catabolism related metabolites

find 6 related metabolites which is associated with chemical reaction(pathway) Xylose catabolism

ATP + D-xylulose ⟶ ADP + D-xylulose 5-phosphate + H+

D-Xylulose-5-phosphate

{[(2R,3S)-2,3,5-trihydroxy-4-oxopentyl]oxy}phosphonic acid

C5H11O8P (230.0191536)


Xylulose 5-phosphate (Xu-5-P) is a metabolite of the hexose monophosphate pathway that activates protein phosphatase 2A to mediate the acute effects of carbohydrate feeding on the glycolytic pathway, as well as the coordinate long-term control of the enzymes required for fatty acid and triglyceride synthesis. Xu-5-P is the signal for the coordinated control of lipogenesis. Feeding carbohydrate causes levels of liver glucose, Glucose-6-phosphate (Glc-6-P), and Fructose-6-phosphate (Fru-6-P) to rise. Elevation of Fru-6-P leads to elevation of Xu-5-P in reactions catalyzed by the near-equilibrium isomerases of the nonoxidative portion of the hexose monophosphate pathway (ribulose 5-phosphate (Ru5P) epimerase [EC 5.1.3.1], ribose 5-phosphate (Rib5P) isomerase [EC 5.3.1.6], transaldolase [EC 2.2.1.2], and transketolase [EC 2.2.1.1]). The elevation of Xu-5-P is the coordinating signal that both acutely activates phosphofructokinase [PFK; EC 2.7.1.11] in glycolysis and promotes the action of the transcription factor carbohydrate responsive element binding protein (ChREBP) to increase transcription of the genes for the enzymes of lipogenesis, the hexose monophosphate shunt, and glycolysis, all of which are required for the de novo synthesis of fat. (PMID 12721358). D-Xylulose 5-phosphate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=4212-65-1 (retrieved 2024-07-16) (CAS RN: 4212-65-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Hydrogen Ion

Hydrogen cation

H+ (1.0078246)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

DL-Xylose

D-(+)-Xylose

C5H10O5 (150.052821)


DL-Xylose is an intermediate of organic synthesis. DL-Xylose is an intermediate of organic synthesis. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose. D-(+)-xylose (Xylose) is a natural compound that is catalyzed by xylose isomerase to form xylulose, which is a key step in the anaerobic ethanol fermentation of xylose.

   

D-Xylulose

D-Xylulose

C5H10O5 (150.052821)


The D-enantiomer of xylulose.

   

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

C10H12N5O13P3-4 (502.9644492)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine-diphosphate

Adenosine-diphosphate

C10H12N5O10P2-3 (424.0059412)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS