NCBI Taxonomy: 507414

Combretum molle (ncbi_taxid: 507414)

found 34 associated metabolites at species taxonomy rank level.

Ancestor: Combretum

Child Taxonomies: none taxonomy data.

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Arjunolic acid

10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3501558)


Arjunolic acid is found in fruits. Arjunolic acid is a constituent of Psidium guajava (guava) Constituent of Psidium guajava (guava). Arjunolic acid is found in fruits and guava.

   

Sericoside

3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl 1,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C36H58O11 (666.3978918)


Constituent of Quercus ilex (holly oak). Sericoside is found in coffee and coffee products and fats and oils. Sericoside is found in coffee and coffee products. Sericoside is a constituent of Quercus ilex (holly oak) Sericoside is a triterpenoid with anti-inflammatory activity, can be isolated form Terminalia. Sericoside has a strong lipolytic activity. Sericoside can also reduce skin wrinkles and ameliorating skin texture[1][2][3].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Sericoside

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1S,4aR,6aR,6aS,6bR,8aR,9R,10R,11R,12aR,14bS)-1,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O11 (666.3978918)


arjunglucoside I is a natural product found in Rudgea viburnoides, Terminalia bellirica, and other organisms with data available. beta-D-Glucopyranosyl (2alpha,3beta,4beta,19alpha)-2,3,19,23-tetrahydroxyolean-12-en-28-oate is a natural product found in Adinandra nitida, Rubus acuminatus, and other organisms with data available. Sericoside is a triterpenoid with anti-inflammatory activity, can be isolated form Terminalia. Sericoside has a strong lipolytic activity. Sericoside can also reduce skin wrinkles and ameliorating skin texture[1][2][3].

   

Arjunolic acid

(4aS,6aS,6bR,9R,10R,11R,12aR)-10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O5 (488.3501558)


   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

4-hydroxy-7,12,16-trimethyl-15-(6-methylhept-5-en-2-yl)-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylic acid

4-hydroxy-7,12,16-trimethyl-15-(6-methylhept-5-en-2-yl)-6-[(3,4,5-trihydroxyoxan-2-yl)oxy]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylic acid

C35H56O8 (604.3974976000001)


   

4,6-dihydroxy-7,12,16-trimethyl-15-(6-methylhept-5-en-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylic acid

4,6-dihydroxy-7,12,16-trimethyl-15-(6-methylhept-5-en-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylic acid

C30H48O4 (472.3552408)


   

(1s,3s,4s,6s,7s,8r,11s,12s,15r,16r)-4-hydroxy-7,12,16-trimethyl-15-[(2r)-6-methylhept-5-en-2-yl]-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylic acid

(1s,3s,4s,6s,7s,8r,11s,12s,15r,16r)-4-hydroxy-7,12,16-trimethyl-15-[(2r)-6-methylhept-5-en-2-yl]-6-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylic acid

C35H56O8 (604.3974976000001)


   

6,7-dimethoxy-9,10-dihydrophenanthrene-2,3,5-triol

6,7-dimethoxy-9,10-dihydrophenanthrene-2,3,5-triol

C16H16O5 (288.0997686)


   

6,7,8,11,12,23,24,27,28,29,37,43,44,45,48,49,50-heptadecahydroxy-2,14,21,33,36,39,54-heptaoxaundecacyclo[33.20.0.0⁴,⁹.0¹⁰,¹⁹.0¹³,¹⁸.0¹⁶,²⁵.0¹⁷,²².0²⁶,³¹.0³⁸,⁵⁵.0⁴¹,⁴⁶.0⁴⁷,⁵²]pentapentaconta-4(9),5,7,10,12,16,18,22,24,26,28,30,41(46),42,44,47,49,51-octadecaene-3,15,20,32,40,53-hexone

6,7,8,11,12,23,24,27,28,29,37,43,44,45,48,49,50-heptadecahydroxy-2,14,21,33,36,39,54-heptaoxaundecacyclo[33.20.0.0⁴,⁹.0¹⁰,¹⁹.0¹³,¹⁸.0¹⁶,²⁵.0¹⁷,²².0²⁶,³¹.0³⁸,⁵⁵.0⁴¹,⁴⁶.0⁴⁷,⁵²]pentapentaconta-4(9),5,7,10,12,16,18,22,24,26,28,30,41(46),42,44,47,49,51-octadecaene-3,15,20,32,40,53-hexone

C48H28O30 (1084.0665388)


   

6,7-dimethoxyphenanthrene-2,3,5-triol

6,7-dimethoxyphenanthrene-2,3,5-triol

C16H14O5 (286.0841194)


   

3,4,7-trimethoxy-9,10-dihydrophenanthrene-2,6-diol

3,4,7-trimethoxy-9,10-dihydrophenanthrene-2,6-diol

C17H18O5 (302.1154178)


   

3,7-dimethoxy-9,10-dihydrophenanthrene-2,5-diol

3,7-dimethoxy-9,10-dihydrophenanthrene-2,5-diol

C16H16O4 (272.1048536)


   

5,6,7-trimethoxyphenanthrene-2,3-diol

5,6,7-trimethoxyphenanthrene-2,3-diol

C17H16O5 (300.0997686)


   

5-[2-(4-hydroxyphenyl)ethyl]-2,3-dimethoxyphenol

5-[2-(4-hydroxyphenyl)ethyl]-2,3-dimethoxyphenol

C16H18O4 (274.1205028)