NCBI Taxonomy: 482967

Bergenia purpurascens (ncbi_taxid: 482967)

found 57 associated metabolites at species taxonomy rank level.

Ancestor: Bergenia

Child Taxonomies: none taxonomy data.

Catechin

(2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.0790344)


Catechin, also known as cyanidanol or catechuic acid, belongs to the class of organic compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Catechin also belongs to the group of compounds known as flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids. Catechin is one of the 4 catechin known diastereoisomers. Two of the isomers are in trans configuration and are called catechin and the other two are in cis configuration and are called epicatechin. The most common catechin isomer is the (+)-catechin. The other stereoisomer is (-)-catechin or ent-catechin. The most common epicatechin isomer is (-)-epicatechin. Catechin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Catechin is a bitter tasting compound and is associated with the bitterness in tea. Catechin is a plant secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Catechin is an antioxidant flavonoid, occurring especially in woody plants as both Catechin and (-)-Catechin (cis) forms. Outside of the human body, Catechin is found, on average, in the highest concentration in foods, such as blackcurrants (Ribes nigrum), evergreen blackberries (Rubus laciniatus), and blackberries (Rubus) and in a lower concentration in dills (Anethum graveolens), hot chocolates, and medlars (Mespilus germanica). Catechin has also been detected, but not quantified in, several different foods, such as rice (Oryza sativa), apple ciders, peanuts (Arachis hypogaea), fruit juices, and red teas. This could make catechin a potential biomarker for the consumption of these foods. Based on a literature review a significant number of articles have been published on Catechin. (+)-catechin is the (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. It has a role as an antioxidant and a plant metabolite. It is an enantiomer of a (-)-catechin. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Cianidanol is a natural product found in Visnea mocanera, Salacia chinensis, and other organisms with data available. Catechin is a metabolite found in or produced by Saccharomyces cerevisiae. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Gallocatechin (related); Crofelemer (monomer of); Bilberry (part of) ... View More ... Present in red wine. Widespread in plants; found in a variety of foodstuffs especies apricots, broad beans, cherries, chocolate, grapes, nectarines, red wine, rhubarb, strawberries and tea The (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. Catechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=154-23-4 (retrieved 2024-07-12) (CAS RN: 154-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

Bergenin

NCGC00346587-02_C14H16O9_Pyrano[3,2-c][2]benzopyran-6(2H)-one, 3,4,4a,10b-tetrahydro-3,4,8,10-tetrahydroxy-2-(hydroxymethyl)-9-methoxy-, (2R,3S,4S,4aR,10bS)-

C14H16O9 (328.0794286)


Bergenin is a trihydroxybenzoic acid. It has a role as a metabolite. Bergenin is a natural product found in Ficus racemosa, Ardisia paniculata, and other organisms with data available. A natural product found in Cenostigma gardnerianum. C26170 - Protective Agent > C275 - Antioxidant Annotation level-1 Bergenin is a cytoprotective and antioxidative polyphenol found in many medicinal plants. Bergenin has a wide spectrum activities such as hepatoprotective, antiinflammatory, immunomodulatory, antitumor, antiviral, and antifungal properties[1][2]. Bergenin is a cytoprotective and antioxidative polyphenol found in many medicinal plants. Bergenin has a wide spectrum activities such as hepatoprotective, antiinflammatory, immunomodulatory, antitumor, antiviral, and antifungal properties[1][2].

   

Procyanidin B3

(2R,3S)-2-(3,4-dihydroxyphenyl)-8-[(2R,3S,4S)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-yl]-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424196)


Procyanidin B3 is a proanthocyanidin consisting of two molecules of (+)-catechin joined by a bond between positions 4 and 8 in alpha-configuration. It can be found in red wine, in barley, in beer, in peach or in Jatropha macrantha, the Huanarpo Macho. It has a role as a metabolite, an antioxidant, an anti-inflammatory agent and an EC 2.3.1.48 (histone acetyltransferase) inhibitor. It is a hydroxyflavan, a proanthocyanidin, a biflavonoid and a polyphenol. It is functionally related to a (+)-catechin. Procyanidin B3 is a natural product found in Quercus dentata, Quercus miyagii, and other organisms with data available. Present in red wine. Occurs in Fragaria subspecies Procyanidin B3 is found in many foods, some of which are quince, strawberry, bilberry, and japanese persimmon. Procyanidin B3 is found in alcoholic beverages. Procyanidin B3 is present in red wine. Procyanidin B3 occurs in Fragaria species. Procyanidin B3 is a natural product, acts as a specific HAT inhibitor, binds to the other site of p300 instead of the active site, selectively inhibits p300-mediated androgen receptor acetylation. Procyanidin B3 has no effect on HDAC or HMT (histone methyltransferase)[1]. Procyanidin B3 is a natural product, acts as a specific HAT inhibitor, binds to the other site of p300 instead of the active site, selectively inhibits p300-mediated androgen receptor acetylation. Procyanidin B3 has no effect on HDAC or HMT (histone methyltransferase)[1].

   

bergenin

5,6,12,14-tetrahydroxy-4-(hydroxymethyl)-13-methoxy-3,8-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(14),10,12-trien-9-one

C14H16O9 (328.0794286)


   

Catechin

(+)-Catechin Hydrate

C15H14O6 (290.0790344)


Annotation level-1 Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

72VUP07IT5

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-(4-hydroxyphenoxy)tetrahydropyran-3,4,5-triol;alpha-Arbutin

C12H16O7 (272.0895986)


Alpha-Arbutin is a glycoside. alpha-Arbutin is a natural product found in Rhodiola chrysanthemifolia, Rhodiola sacra, and other organisms with data available. See also: ... View More ... α-Arbutin (4-Hydroxyphenyl α-D-glucopyranoside) is emerging as popular and effective skin whiteners, acting as tyrosinase inhibitor[1]. α-Arbutin (4-Hydroxyphenyl α-D-glucopyranoside) is emerging as popular and effective skin whiteners, acting as tyrosinase inhibitor[1].

   

Alpha-Arbutin

Alpha-Arbutin

C12H16O7 (272.0895986)


α-Arbutin (4-Hydroxyphenyl α-D-glucopyranoside) is emerging as popular and effective skin whiteners, acting as tyrosinase inhibitor[1]. α-Arbutin (4-Hydroxyphenyl α-D-glucopyranoside) is emerging as popular and effective skin whiteners, acting as tyrosinase inhibitor[1].

   

KB-53

2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2R-trans)-

C15H14O6 (290.0790344)


Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

1,2,4,6-Tetragalloylglucose

1,2,4,6-Tetragalloylglucose

C34H28O22 (788.1072188)


   

3,4,8,10-tetrahydroxy-2-(hydroxymethyl)-9-methoxy-3,4,4a,10b-tetrahydro-2H-pyrano[3,2-c]isochromen-6-one

3,4,8,10-tetrahydroxy-2-(hydroxymethyl)-9-methoxy-3,4,4a,10b-tetrahydro-2H-pyrano[3,2-c]isochromen-6-one

C14H16O9 (328.0794286)


   

[(2r,7r)-5,6,12,14-tetrahydroxy-13-methoxy-9-oxo-3,8-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(14),10,12-trien-4-yl]methyl 3,4,5-trihydroxybenzoate

[(2r,7r)-5,6,12,14-tetrahydroxy-13-methoxy-9-oxo-3,8-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(14),10,12-trien-4-yl]methyl 3,4,5-trihydroxybenzoate

C21H20O13 (480.090387)


   

2,4-dihydroxy-5-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 3,4,5-trihydroxybenzoate

2,4-dihydroxy-5-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 3,4,5-trihydroxybenzoate

C27H24O18 (636.0962604)


   

(2r,3s,4r,5r,6s)-4,5-dihydroxy-6-(4-hydroxyphenoxy)-2-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 3,4,5-trihydroxybenzoate

(2r,3s,4r,5r,6s)-4,5-dihydroxy-6-(4-hydroxyphenoxy)-2-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 3,4,5-trihydroxybenzoate

C26H24O15 (576.1115154)


   

7-(3,4-dihydroxyphenyl)-4,6-dihydroxy-8-oxo-6,7-dihydro-5h-naphthalen-2-yl 3,4,5-trihydroxybenzoate

7-(3,4-dihydroxyphenyl)-4,6-dihydroxy-8-oxo-6,7-dihydro-5h-naphthalen-2-yl 3,4,5-trihydroxybenzoate

C23H18O10 (454.0899928)


   

[(2s,4r,5s,6s,7r)-5,6,12,13,14-pentahydroxy-9-oxo-3,8-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),11,13-trien-4-yl]methyl 3,4,5-trihydroxybenzoate

[(2s,4r,5s,6s,7r)-5,6,12,13,14-pentahydroxy-9-oxo-3,8-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),11,13-trien-4-yl]methyl 3,4,5-trihydroxybenzoate

C20H18O13 (466.0747378)


   

4,5-dihydroxy-6-(4-hydroxyphenoxy)-2-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 3,4,5-trihydroxybenzoate

4,5-dihydroxy-6-(4-hydroxyphenoxy)-2-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 3,4,5-trihydroxybenzoate

C26H24O15 (576.1115154)


   

(2s,3r,4s,5s,6r)-2,4-dihydroxy-5-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 3,4,5-trihydroxybenzoate

(2s,3r,4s,5s,6r)-2,4-dihydroxy-5-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 3,4,5-trihydroxybenzoate

C27H24O18 (636.0962604)


   

(2s,4r,5r,6s,7s)-5,12,13,14-tetrahydroxy-4-(hydroxymethyl)-9-oxo-3,8-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(14),10,12-trien-6-yl 3,4,5-trihydroxybenzoate

(2s,4r,5r,6s,7s)-5,12,13,14-tetrahydroxy-4-(hydroxymethyl)-9-oxo-3,8-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(14),10,12-trien-6-yl 3,4,5-trihydroxybenzoate

C20H18O13 (466.0747378)


   

5,12,13,14-tetrahydroxy-4-(hydroxymethyl)-9-oxo-3,8-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),11,13-trien-6-yl 3,4,5-trihydroxybenzoate

5,12,13,14-tetrahydroxy-4-(hydroxymethyl)-9-oxo-3,8-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),11,13-trien-6-yl 3,4,5-trihydroxybenzoate

C20H18O13 (466.0747378)


   

(2r,3s,4s)-2-(3,4-dihydroxyphenyl)-4-[(2r,3s)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

(2r,3s,4s)-2-(3,4-dihydroxyphenyl)-4-[(2r,3s)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C30H26O12 (578.1424196)


   

(6s,7r)-7-(3,4-dihydroxyphenyl)-4,6-dihydroxy-8-oxo-6,7-dihydro-5h-naphthalen-2-yl 3,4,5-trihydroxybenzoate

(6s,7r)-7-(3,4-dihydroxyphenyl)-4,6-dihydroxy-8-oxo-6,7-dihydro-5h-naphthalen-2-yl 3,4,5-trihydroxybenzoate

C23H18O10 (454.0899928)


   

4-hydroxy-3,5-bis(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

4-hydroxy-3,5-bis(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

C34H28O22 (788.1072188)


   

[3,4,5-trihydroxy-6-(4-hydroxyphenoxy)oxan-2-yl]methyl 3,4,5-trihydroxybenzoate

[3,4,5-trihydroxy-6-(4-hydroxyphenoxy)oxan-2-yl]methyl 3,4,5-trihydroxybenzoate

C19H20O11 (424.100557)


   

{5,6,12,13,14-pentahydroxy-9-oxo-3,8-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),11,13-trien-4-yl}methyl 3,4,5-trihydroxybenzoate

{5,6,12,13,14-pentahydroxy-9-oxo-3,8-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(10),11,13-trien-4-yl}methyl 3,4,5-trihydroxybenzoate

C20H18O13 (466.0747378)


   

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(4-hydroxyphenoxy)oxan-2-yl]methyl 3,4,5-trihydroxybenzoate

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(4-hydroxyphenoxy)oxan-2-yl]methyl 3,4,5-trihydroxybenzoate

C19H20O11 (424.100557)


   

(2s,3r,4s,5s,6r)-4-hydroxy-3,5-bis(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

(2s,3r,4s,5s,6r)-4-hydroxy-3,5-bis(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

C34H28O22 (788.1072188)


   

(2r,7r)-5,12,14-trihydroxy-4-(hydroxymethyl)-13-methoxy-9-oxo-3,8-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(14),10,12-trien-6-yl 3,4,5-trihydroxybenzoate

(2r,7r)-5,12,14-trihydroxy-4-(hydroxymethyl)-13-methoxy-9-oxo-3,8-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(14),10,12-trien-6-yl 3,4,5-trihydroxybenzoate

C21H20O13 (480.090387)