Aesculetin

6,7-dihydroxychromen-2-one

C9H6O4 (178.0266076)


Aesculetin, also known as cichorigenin or cichoriin aglucon, belongs to the class of organic compounds known as 6,7-dihydroxycoumarins. These are coumarins bearing two hydroxyl groups at positions 6 and 7 of the coumarin skeleton, respectively. Aesculetin is found, on average, in the highest concentration within sherries. Aesculetin has also been detected, but not quantified, in several different foods, such as horseradish, carrots, dandelions, grape wines, and highbush blueberries. This could make aesculetin a potential biomarker for the consumption of these foods. Esculetin is a hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light. It has a role as an antioxidant, an ultraviolet filter and a plant metabolite. Esculetin is a natural product found in Artemisia eriopoda, Euphorbia decipiens, and other organisms with data available. A hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light. Metabolite of infected sweet potato. Aesculetin is found in many foods, some of which are root vegetables, wild carrot, sweet basil, and carrot. D020011 - Protective Agents > D000975 - Antioxidants Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB031_Aesculetin_pos_20eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_10eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_40eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_50eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_30eV_CB000017.txt [Raw Data] CB031_Aesculetin_neg_10eV_000010.txt [Raw Data] CB031_Aesculetin_neg_20eV_000010.txt [Raw Data] CB031_Aesculetin_neg_30eV_000010.txt CONFIDENCE standard compound; ML_ID 39 Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].

   

Cichoriin

6-hydroxy-7-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-tetrahydro-2H-pyran-2-yloxy)-2H-chromen-2-one

C15H16O9 (340.0794286)


Cichoriin is a glycoside and a member of coumarins. Cichoriin is a natural product found in Koelpinia linearis, Cichorium intybus, and other organisms with data available. Isolated from chicory (Cichorium intybus). Cichoriin is found in chicory and green vegetables. Cichoriin is found in chicory. Cichoriin is isolated from chicory (Cichorium intybus Cichoriin is an active compounds against SARS-CoV-2, and may be a potential candidate in researching severe COVID-19[1]. Cichoriin is an active compounds against SARS-CoV-2, and may be a potential candidate in researching severe COVID-19[1].

   

Scorzoside

3-methyl-6,9-dimethylidene-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3a,4,5,6a,7,8,9a,9b-octahydro-3H-azuleno[4,5-b]furan-2-one

C21H30O8 (410.194058)


Constituent of Scorzonera hispanica (scorzonera). Scorzoside is found in coffee and coffee products and root vegetables. Scorzoside is found in coffee and coffee products. Scorzoside is a constituent of Scorzonera hispanica (scorzonera).

   

Jacquinelin

(3S,3aS,9aS,9bS)-9-(hydroxymethyl)-3,6-dimethyl-2H,3H,3aH,4H,5H,7H,9aH,9bH-azuleno[4,5-b]furan-2,7-dione

C15H18O4 (262.1205028)


Jacquinelin, also known as 11,13-dihydro-8-deoxylactucin or jacquilenin, is a member of the class of compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. Jacquinelin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Jacquinelin can be found in chicory and endive, which makes jacquinelin a potential biomarker for the consumption of these food products.

   

Crepidiaside B

(3S,3aS,9aS,9bS)-3,6-dimethyl-9-({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-2H,3H,3aH,4H,5H,7H,9aH,9bH-azuleno[4,5-b]furan-2,7-dione

C21H28O9 (424.17332380000005)


Crepidiaside b is a member of the class of compounds known as O-glycosyl compounds. O-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Crepidiaside b is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Crepidiaside b can be found in chicory and endive, which makes crepidiaside b a potential biomarker for the consumption of these food products.

   

Luteolin 7-O-glucoside

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one mono-beta-D-glucopyranoside

C21H20O11 (448.100557)


   

Esculetin

InChI=1\C9H6O4\c10-6-3-5-1-2-9(12)13-8(5)4-7(6)11\h1-4,10-11

C9H6O4 (178.0266076)


D020011 - Protective Agents > D000975 - Antioxidants relative retention time with respect to 9-anthracene Carboxylic Acid is 0.434 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.428 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.430 Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].

   

Scorzoside

3-methyl-6,9-dimethylidene-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydroazuleno[4,5-b]furan-2-one

C21H30O8 (410.194058)


   

Cichoriin

6-hydroxy-7-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-tetrahydro-2H-pyran-2-yloxy)-2H-chromen-2-one

C15H16O9 (340.0794286)


Cichoriin is a glycoside and a member of coumarins. Cichoriin is a natural product found in Koelpinia linearis, Cichorium intybus, and other organisms with data available. Cichoriin is an active compounds against SARS-CoV-2, and may be a potential candidate in researching severe COVID-19[1]. Cichoriin is an active compounds against SARS-CoV-2, and may be a potential candidate in researching severe COVID-19[1].

   

(3s,3ar,4s,9as,9br)-4-hydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3s,3ar,4s,9as,9br)-4-hydroxy-3,6,9-trimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H18O4 (262.1205028)


   

(3s,3as,9s,11as)-6-(hydroxymethyl)-3,10-dimethyl-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3s,3as,9s,11as)-6-(hydroxymethyl)-3,10-dimethyl-9-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C21H32O9 (428.2046222)


   

3,6,9-trimethyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

3,6,9-trimethyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C21H28O9 (424.17332380000005)


   

(3as,9as,9bs)-6-methyl-3-methylidene-9-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3as,9as,9bs)-6-methyl-3-methylidene-9-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C21H26O9 (422.15767460000006)


   

(3s,3ar,4s,9as,9br)-3,6,9-trimethyl-2,7-dioxo-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-4-yl 3-methylbutanoate

(3s,3ar,4s,9as,9br)-3,6,9-trimethyl-2,7-dioxo-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-4-yl 3-methylbutanoate

C20H26O5 (346.17801460000004)


   

(3s,3as,9as,9br)-9-(hydroxymethyl)-3,6-dimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

(3s,3as,9as,9br)-9-(hydroxymethyl)-3,6-dimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H18O4 (262.1205028)