NCBI Taxonomy: 152432

Anthoshorea roxburghii (ncbi_taxid: 152432)

found 34 associated metabolites at species taxonomy rank level.

Ancestor: Anthoshorea

Child Taxonomies: none taxonomy data.

epsilon-Viniferin

5-[6-hydroxy-2-(4-hydroxyphenyl)-4-[(Z)-2-(4-hydroxyphenyl)ethenyl]-2,3-dihydro-1-benzofuran-3-yl]benzene-1,3-diol

C28H22O6 (454.1416312)


(7E,7R,8R)-epsilon-Viniferin is found in alcoholic beverages. (7E,7R,8R)-epsilon-Viniferin is isolated from leaves of wine grape (Vitis vinifera) infected with Botrytis cinere

   

trans-Piceid

(2S,3R,4S,5S,6R)-2-{3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O8 (390.1314612)


trans-Piceid is found in alcoholic beverages. trans-Piceid is present in grapeskins and red wine. It is isolated from Polygonum cuspidatum (Japanese knotweed).Piceid is a stilbenoid glucoside and is a major resveratrol derivative in grape juices (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

Isohopeaphenol

8,16-bis(4-hydroxyphenyl)-9-[4,6,12-trihydroxy-8,16-bis(4-hydroxyphenyl)-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2(7),3,5,10(17),11,13-hexaen-9-yl]-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10(17),11,13-hexaene-4,6,12-triol

C56H42O12 (906.2676132)


Isohopeaphenol is found in alcoholic beverages. Isohopeaphenol is isolated from Vitis vinifera (wine grape). Isolated from Vitis vinifera (wine grape). Isohopeaphenol is found in alcoholic beverages and fruits.

   

Viniferin

5-[6-hydroxy-2-(4-hydroxyphenyl)-4-[2-(4-hydroxyphenyl)ethenyl]-2,3-dihydro-1-benzofuran-3-yl]benzene-1,3-diol

C28H22O6 (454.1416312)


   

Anthemoside

5-hydroxy-2-(4-hydroxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O10 (432.105642)


Constituent of Anthemis nobilis (Roman chamomile). Anthemoside is found in herbs and spices.

   

trans-Piceid

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C20H22O8 (390.1314612)


Trans-piceid is a stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. It has a role as a metabolite, a potassium channel modulator, an anti-arrhythmia drug, a hepatoprotective agent, an antioxidant, a nephroprotective agent and a geroprotector. It is a stilbenoid, a polyphenol, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-resveratrol. Polydatin, or Piceid, is a natural precursor and glycoside form of resveratrol with a monocrystalline structure. While it is isolated from the bark of *Picea sitchensis* or *Polygonum cuspidatum*, polydatin may be detected in grape, peanut, hop cones, red wines, hop pellets, cocoa-containing products, chocolate products and many daily diets. Polydatin possesses anti-inflammatory, immunoregulatory, anti-oxidative and anti-tumor activities. It is shown to mediate a cytotoxic action on colorectal cancer cells by inducing cell arrest and apoptosis. Polydatin is a natural product found in Vitis rupestris, Vitis labrusca, and other organisms with data available. trans-Piceid is found in alcoholic beverages. trans-Piceid is present in grapeskins and red wine. It is isolated from Polygonum cuspidatum (Japanese knotweed).Piceid is a stilbenoid glucoside and is a major resveratrol derivative in grape juices A stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   
   

Epsilon-Viniferin

1,3-BENZENEDIOL, 5-(2,3-DIHYDRO-6-HYDROXY-2-(4-HYDROXYPHENYL)-4-(2-(4-HYDROXYPHENYL)ETHENYL)-3-BENZOFURANYL)-, (2R-(2.ALPHA.,3.BETA.,4(E)))-

C28H22O6 (454.1416312)


(-)-trans-epsilon-viniferin is a stilbenoid that is the (-)-trans-stereoisomer of epsilon-viniferin, obtained by cyclodimerisation of trans-resveratrol. It has a role as a metabolite. It is a member of 1-benzofurans, a polyphenol and a stilbenoid. It is functionally related to a trans-resveratrol. It is an enantiomer of a (+)-trans-epsilon-viniferin. Epsilon-viniferin is a natural product found in Dipterocarpus grandiflorus, Dipterocarpus hasseltii, and other organisms with data available. A stilbenoid that is the (-)-trans-stereoisomer of epsilon-viniferin, obtained by cyclodimerisation of trans-resveratrol.

   

Apigetrin

Apigenin-7-O-glucoside

C21H20O10 (432.105642)


Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2]. Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2].

   

piceid

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C20H22O8 (390.1314612)


Origin: Plant, Glucosides, Stilbenes (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

Epsilon-viniferin

Epsilon-viniferin

C28H22O6 (454.1416312)


Annotation level-1

   

Ampelopsin B

Ampelopsin B

C28H22O6 (454.1416312)


A heterotetracyclic stilbenoid that is a homodimer obtained by cyclodimerisation of resveratrol.

   

(1r,16r)-8,16-bis(4-hydroxyphenyl)-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,8,10,12,14(17)-heptaene-4,6,12-triol

(1r,16r)-8,16-bis(4-hydroxyphenyl)-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,8,10,12,14(17)-heptaene-4,6,12-triol

C28H20O6 (452.125982)


   

(2s,3r,4s,5s,6r)-2-{2,4-dihydroxy-5-[(1e)-2-(4-hydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{2,4-dihydroxy-5-[(1e)-2-(4-hydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O9 (406.1263762)


   

apigetrin

CHEMBL487995; SR-05000002285; Galactosyl-7-apigenin; EINECS 209-430-5; 5-Hydroxy-2-(4-hydroxyphenyl)-7-(4,5,6-trihydroxy-3-(hydroxymethyl)(2-oxanyloxy))-4H-chromen-4-one; Cosemetin; 5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one; COSMOSIIN; 4H-1-Benzopyran-4-one, 7-(beta-D-glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)- (9CI); Apigenin, 7-beta-D-glucopyranoside; Apigenin 7-O-beta-D-glucopyranoside; 7-(beta-D-Glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; Cosmosiine; 7-O-(beta-D-Glucosyl)apigenin; Thalictiin; SR-05000002285-3; A831652; Cosmosioside; 23598-21-2; NSC 407303; Apigetrin; NCGC00163513-01; CCG-208379; 62532-75-6; 5-hydroxy-2-(4-hydroxyphenyl)-7-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-1-benzopyran-4-one; UNII-7OF2S66PCH; SR-05000002285-2; 5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one; AC1NUZ8G; Apigenin, 7-beta-D-galactopyranoside; 7-[(2S,3R,4S,5R,6R)-6-(hydroxymethyl)-3,4,5-tris(oxidanyl)oxan-2-yl]oxy-2-(4-hydroxyphenyl)-5-oxidanyl-chromen-4-one; 7OF2S66PCH; Cosmosiin (8CI)

C21H20O10 (432.105642)


{"Ingredient_id": "HBIN016480","Ingredient_name": "apigetrin","Alias": "CHEMBL487995; SR-05000002285; Galactosyl-7-apigenin; EINECS 209-430-5; 5-Hydroxy-2-(4-hydroxyphenyl)-7-(4,5,6-trihydroxy-3-(hydroxymethyl)(2-oxanyloxy))-4H-chromen-4-one; Cosemetin; 5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one; COSMOSIIN; 4H-1-Benzopyran-4-one, 7-(beta-D-glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)- (9CI); Apigenin, 7-beta-D-glucopyranoside; Apigenin 7-O-beta-D-glucopyranoside; 7-(beta-D-Glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; Cosmosiine; 7-O-(beta-D-Glucosyl)apigenin; Thalictiin; SR-05000002285-3; A831652; Cosmosioside; 23598-21-2; NSC 407303; Apigetrin; NCGC00163513-01; CCG-208379; 62532-75-6; 5-hydroxy-2-(4-hydroxyphenyl)-7-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-1-benzopyran-4-one; UNII-7OF2S66PCH; SR-05000002285-2; 5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one; AC1NUZ8G; Apigenin, 7-beta-D-galactopyranoside; 7-[(2S,3R,4S,5R,6R)-6-(hydroxymethyl)-3,4,5-tris(oxidanyl)oxan-2-yl]oxy-2-(4-hydroxyphenyl)-5-oxidanyl-chromen-4-one; 7OF2S66PCH; Cosmosiin (8CI)","Ingredient_formula": "C21H20O10","Ingredient_Smile": "C1=CC(=CC=C1C2=CC(=O)C3=C(C=C(C=C3O2)OC4C(C(C(C(O4)CO)O)O)O)O)O","Ingredient_weight": "432.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT19095","TCMID_id": "30618","TCMSP_id": "NA","TCM_ID_id": "21625","PubChem_id": "12304093","DrugBank_id": "NA"}

   

(1r,8r,9r,16r)-8,16-bis(4-hydroxyphenyl)-9-[(1r,8r,9r,16r)-4,6,12-trihydroxy-8,16-bis(4-hydroxyphenyl)-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10,12,14(17)-hexaen-9-yl]-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10(17),11,13-hexaene-4,6,12-triol

(1r,8r,9r,16r)-8,16-bis(4-hydroxyphenyl)-9-[(1r,8r,9r,16r)-4,6,12-trihydroxy-8,16-bis(4-hydroxyphenyl)-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10,12,14(17)-hexaen-9-yl]-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10(17),11,13-hexaene-4,6,12-triol

C56H42O12 (906.2676132)


   

(3s,4s)-3-acetyl-5,7-dihydroxy-4-(4-hydroxyphenyl)-3,4-dihydro-2-benzopyran-1-one

(3s,4s)-3-acetyl-5,7-dihydroxy-4-(4-hydroxyphenyl)-3,4-dihydro-2-benzopyran-1-one

C17H14O6 (314.0790344)


   

(3s,4s)-3-acetyl-4-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2-benzopyran-1-one

(3s,4s)-3-acetyl-4-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2-benzopyran-1-one

C17H14O7 (330.0739494)


   

8,16-bis(4-hydroxyphenyl)-9-[4,6,12-trihydroxy-8,16-bis(4-hydroxyphenyl)-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10,12,14(17)-hexaen-9-yl]-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10(17),11,13-hexaene-4,6,12-triol

8,16-bis(4-hydroxyphenyl)-9-[4,6,12-trihydroxy-8,16-bis(4-hydroxyphenyl)-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10,12,14(17)-hexaen-9-yl]-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10(17),11,13-hexaene-4,6,12-triol

C56H42O12 (906.2676132)


   

(1s,2r,3r,9s,10s,17s)-3-(3,5-dihydroxyphenyl)-2,9,17-tris(4-hydroxyphenyl)-8-oxapentacyclo[8.7.2.0⁴,¹⁸.0⁷,¹⁹.0¹¹,¹⁶]nonadeca-4,6,11,13,15,18-hexaene-5,13,15-triol

(1s,2r,3r,9s,10s,17s)-3-(3,5-dihydroxyphenyl)-2,9,17-tris(4-hydroxyphenyl)-8-oxapentacyclo[8.7.2.0⁴,¹⁸.0⁷,¹⁹.0¹¹,¹⁶]nonadeca-4,6,11,13,15,18-hexaene-5,13,15-triol

C42H32O9 (680.2046222)


   

3-(3,5-dihydroxyphenyl)-2,9,17-tris(4-hydroxyphenyl)-8-oxapentacyclo[8.7.2.0⁴,¹⁸.0⁷,¹⁹.0¹¹,¹⁶]nonadeca-4,6,11,13,15,18-hexaene-5,13,15-triol

3-(3,5-dihydroxyphenyl)-2,9,17-tris(4-hydroxyphenyl)-8-oxapentacyclo[8.7.2.0⁴,¹⁸.0⁷,¹⁹.0¹¹,¹⁶]nonadeca-4,6,11,13,15,18-hexaene-5,13,15-triol

C42H32O9 (680.2046222)


   

5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O10 (432.105642)


   

(1r,8r,9s,16r)-8,16-bis(4-hydroxyphenyl)-9-[(1r,8r,9s,16r)-4,6,12-trihydroxy-8,16-bis(4-hydroxyphenyl)-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10,12,14(17)-hexaen-9-yl]-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10,12,14(17)-hexaene-4,6,12-triol

(1r,8r,9s,16r)-8,16-bis(4-hydroxyphenyl)-9-[(1r,8r,9s,16r)-4,6,12-trihydroxy-8,16-bis(4-hydroxyphenyl)-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10,12,14(17)-hexaen-9-yl]-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,10,12,14(17)-hexaene-4,6,12-triol

C56H42O12 (906.2676132)


   

(2s,3r,4s,5s,6r)-2-{2,4-dihydroxy-5-[2-(4-hydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{2,4-dihydroxy-5-[2-(4-hydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O9 (406.1263762)


   

(3r,4s)-3-acetyl-4-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2-benzopyran-1-one

(3r,4s)-3-acetyl-4-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2-benzopyran-1-one

C17H14O7 (330.0739494)


   

(1r,16r)-9,16-bis(4-hydroxyphenyl)-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,8,10,12,14(17)-heptaene-4,6,12-triol

(1r,16r)-9,16-bis(4-hydroxyphenyl)-15-oxatetracyclo[8.6.1.0²,⁷.0¹⁴,¹⁷]heptadeca-2,4,6,8,10,12,14(17)-heptaene-4,6,12-triol

C28H20O6 (452.125982)


   

(3r,4s)-3-acetyl-5,7-dihydroxy-4-(4-hydroxyphenyl)-3,4-dihydro-2-benzopyran-1-one

(3r,4s)-3-acetyl-5,7-dihydroxy-4-(4-hydroxyphenyl)-3,4-dihydro-2-benzopyran-1-one

C17H14O6 (314.0790344)


   

(3s,4s)-5,7-dihydroxy-3-[(1s)-1-hydroxyethyl]-4-(4-hydroxyphenyl)-3,4-dihydro-2-benzopyran-1-one

(3s,4s)-5,7-dihydroxy-3-[(1s)-1-hydroxyethyl]-4-(4-hydroxyphenyl)-3,4-dihydro-2-benzopyran-1-one

C17H16O6 (316.0946836)