NCBI Taxonomy: 114455
Macrozamia (ncbi_taxid: 114455)
found 11 associated metabolites at genus taxonomy rank level.
Ancestor: Zamiaceae
Child Taxonomies: Macrozamia dyeri, Macrozamia lucida, Macrozamia moorei, Macrozamia cranei, Macrozamia montana, Macrozamia occidua, Macrozamia viridis, Macrozamia humilis, Macrozamia reducta, Macrozamia riedlei, Macrozamia secunda, Macrozamia elegans, Macrozamia fraseri, Macrozamia communis, Macrozamia conferta, Macrozamia machinii, Macrozamia miquelii, Macrozamia spiralis, Macrozamia macleayi, Macrozamia concinna, Macrozamia flexuosa, Macrozamia johnsonii, Macrozamia stenomera, Macrozamia fawcettii, Macrozamia diplomera, Macrozamia douglasii, Macrozamia longispina, Macrozamia heteromera, Macrozamia fearnsidei, Macrozamia parcifolia, Macrozamia serpentina, Macrozamia polymorpha, Macrozamia plurinervia, Macrozamia crassifolia, Macrozamia lomandroides, Macrozamia cardiacensis, Macrozamia macdonnellii, Macrozamia platyrhachis, Macrozamia glaucophylla, unclassified Macrozamia, Macrozamia pauli-guilielmi, Macrozamia mountperriensis, Macrozamia lucida x Macrozamia macleayi, Macrozamia longispina x Macrozamia macleayi
Sequoyitol
1D-5-O-methyl-myo-inositol is a member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3r,4R,5S,6r-stereoisomer). It has a role as a plant metabolite. Sequoyitol is a natural product found in Podocarpus sellowii, Aristolochia gigantea, and other organisms with data available. Occurs in all gymnosperms and two families of dicotyledonsand is also isolated from ferns Nephrolepis auriculata and Nephrolepis biserrata. Sequoyitol is found in soy bean and ginkgo nuts. Sequoyitol is found in ginkgo nuts. Sequoyitol occurs in all gymnosperms and two families of dicotyledons. Also isolated from ferns Nephrolepis auriculata and Nephrolepis biserrat Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1]. Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1].
Macrozamin
Macrozamin is a glycoside. (Z)-methyl-oxido-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4S,5R)-3,4,5-trihydroxytetrahydropyran-2-yl]oxymethyl]tetrahydropyran-2-yl]oxymethylimino]ammonium is a natural product found in Macrozamia communis, Dioon spinulosum, and other organisms with data available. Macrozamin is a major constituent principle of Cycads. Macrozamin has carcinogenic, mutagenic, teratogenic and neurotoxic properties[1].
Cycasin
Cycasin is an alkaloid from seeds of the false sago Cycas circinalis and sago cycas Cycas revoluta (Cycadaceae). Carcinogen of significance in human nutrition; but in practice the toxin is present in the seeds of the plant and the pith is used as a food source. Isolated from human milk D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009498 - Neurotoxins
Methane
Methane (CH4), is a gas produced by a group of colonic anaerobes, absorbed from the colon and excreted in expired air. As a result, breath CH4 excretion can be used as an indicator of the in situ activity of the methanogenic flora. All CH4 produced in human beings is a metabolic product of intestinal bacteria, and about 50\\% of CH4 produced in the gut is absorbed and excreted in expired air. Because there appears to be no catabolism of this gas by other colonic organisms or host cells, breath CH4 measurements provide a rapid, simple means of semi quantitatively assessing the ongoing in situ metabolism of the methanogenic flora. It could seem likely that the intracolonic activity of a variety of bacteria similarly might be assessed quantitatively via analysis of expired air. However, the application of this methodology has been confounded by the rapid catabolism of many volatile bacterial products by other bacteria or human tissue. A striking aspect of the studies of breath CH4 measurements is the enormous individual variations in the excretion of this gas. Virtually all children under 5 years of age and 66\\% of the adult population do not exhale appreciable quantities of CH4. The remaining 34\\% of the adult population has appreciable breath methane concentrations of up to 80 ppm (mean, 15.2 ppm; median, 11.8 ppm). On this basis the population can be divided into CH4 producers or nonproducers, although a more accurate term would be to define subjects as being low or high CH4 producers. The primary methanogen present in the human colon, Methanobrevibacter smithii, produces methane via a reaction that relies entirely on H2 produced by other organisms to reduce CO2 to CH4. Thus, breath CH4 concentrations might be expected to mirror breath H2 concentrations; however, the high levels of CH4 observed in the fasting state may result from H2 derived from endogenous rather than dietary substrates. A diverse assortment of conditions has been associated with a high prevalence of methane producers including diverticulosis, cystic fibrosis, high fasting serum cholesterol levels, encopresis in children, and aorto-iliac vascular disease, whereas obesity (measured as skin-fold thickness) was related inversely to methane production. The challenge that remains is to determine to what extent methanogens actively influence body physiology vs. simply serve as passive indicators of colonic function. (PMID: 16469670, Clinical Gastroenterology and Hepatology Volume 4, Issue 2, February 2006, Pages 123-129). Methane can be found in Desulfovibrio, Methanobacterium, Methanobrevibacter, Methanococcus, Methanocorpusculum, Methanoculleus, Methanoflorens, Methanofollis, Methanogenium, Methanomicrobium, Methanopyrus, Methanoregula, Methanosaeta, Methanosarcina, Methanosphaera, Methanospirillium, Methanothermobacter (Wikipedia). Methane (CH4), is a gas produced by a group of colonic anaerobes, absorbed from the colon and excreted in expired air. As a result, breath CH4 excretion can be used as an indicator of the in situ activity of the methanogenic flora. All CH4 produced in human beings is a metabolic product of intestinal bacteria, and about 50\\% of CH4 produced in the gut is absorbed and excreted in expired air. Because there appears to be no catabolism of this gas by other colonic organisms or host cells, breath CH4 measurements provide a rapid, simple means of semi quantitatively assessing the ongoing in situ metabolism of the methanogenic flora. It could seem likely that the intracolonic activity of a variety of bacteria similarly might be assessed quantitatively via analysis of expired air. However, the application of this methodology has been confounded by the rapid catabolism of many volatile bacterial products by other bacteria or human tissue. A striking aspect of the studies of breath CH4 measurements is the enormous individual variations in the excretion of this gas. Virtually all children under 5 years of age and 66\\% of the adult population do not exhale appreciable quantities of CH4. The remaining 34\\% of the adult population has appreciable breath methane concentrations of up to 80 ppm (mean, 15.2 ppm; median, 11.8 ppm). On this basis the population can be divided into CH4 producers or nonproducers, although a more accurate term would be to define subjects as being low or high CH4 producers. The primary methanogen present in the human colon, Methanobrevibacter smithii, produces methane via a reaction that relies entirely on H2 produced by other organisms to reduce CO2 to CH4. Thus, breath CH4 concentrations might be expected to mirror breath H2 concentrations; however, the high levels of CH4 observed in the fasting state may result from H2 derived from endogenous rather than dietary substrates. A diverse assortment of conditions has been associated with a high prevalence of methane producers including diverticulosis, cystic fibrosis, high fasting serum cholesterol levels, encopresis in children, and aorto-iliac vascular disease, whereas obesity (measured as skin-fold thickness) was related inversely to methane production. The challenge that remains is to determine to what extent methanogens actively influence body physiology vs. simply serve as passive indicators of colonic function. (PMID: 16469670, Clinical Gastroenterology and Hepatology Volume 4, Issue 2, February 2006, Pages 123-129) [HMDB]
Pinitol
D-pinitol is the D-enantiomer of pinitol. It has a role as a geroprotector and a member of compatible osmolytes. It is functionally related to a 1D-chiro-inositol. It is an enantiomer of a L-pinitol. Methylinositol has been used in trials studying the treatment of Dementia and Alzheimers Disease. D-Pinitol is a natural product found in Aegialitis annulata, Senna macranthera var. micans, and other organisms with data available. A member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3S,4S,5S,6S-isomer). D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].
Sequoyitol
1D-5-O-methyl-myo-inositol is a member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3r,4R,5S,6r-stereoisomer). It has a role as a plant metabolite. Sequoyitol is a natural product found in Podocarpus sellowii, Aristolochia gigantea, and other organisms with data available. Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1]. Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1].
pinitol
D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].