Gene Association: ZNF318

UniProt Search: ZNF318 (PROTEIN_CODING)
Function Description: zinc finger protein 318

found 6 associated metabolites with current gene based on the text mining result from the pubmed database.

Nα-Acetyl-L-lysine

(2S)-6-(Acetylamino)-2-aminohexanoic acid

C8H16N2O3 (188.1161)


N-epsilon-Acetyl-L-lysine also known as Nepsilon-Acetyllysine or N6-Acetyllysine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at one of its nitrogen atoms. N-epsilon-Acetyl-L-lysine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-epsilon-Acetyl-L-lysine is a biologically available sidechain, N-capped form of the proteinogenic alpha amino acid L-lysine. Unlike L-lysine, acetylated lysine derivatives such as N-epsilon-Acetyl-L-lysine are zwitterionic compounds. These are molecules that contains an equal number of positively- and negatively-charged functional groups. N-epsilon-Acetyl-L-lysine is found naturally in eukaryotes ranging from yeast to plants to humans. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins (often histones) by specific hydrolases. N-epsilon-Acetyl-L-lysine can be biosynthesized from L-lysine and acetyl-CoA via the enzyme known as Lysine N-acetyltransferase. Post-translational lysine-acetylation is one of two major modifications of lysine residues in various proteins – either N-terminal or N-alpha acetylation or N6 (sidechain) acetylation. Side-chain acetylation of specific lysine residues in the N-terminal domains of core histones is a biochemical marker of active genes. Acetylation is now known to play a major role in eukaryotic transcription. Specifically, acetyltransferase enzymes that act on particular lysine side chains of histones and other proteins are intimately involved in transcriptional activation. By modifying chromatin proteins and transcription-related factors, these acetylases are believed to regulate the transcription of many genes. The best-characterized mechanism is acetylation, catalyzed by histone acetyltransferase (HAT) enzymes. HATs function enzymatically by transferring an acetyl group from acetyl-coenzyme A (acetyl-CoA) to the amino group of certain lysine side chains within a histones basic N-terminal tail region. Within a histone octamer, these regions extend out from the associated globular domains, and in the context of a nucleosome, they are believed to bind the DNA through charge interactions (positively charged histone tails associated with negatively charged DNA) or mediate interactions between nucleosomes. Lysine acetylation, which neutralizes part of a tail regions positive charge, is postulated to weaken histone-DNA or nucleosome-nucleosome interactions and/or signal a conformational change, thereby destabilizing nucleosome structure or arrangement and giving other nuclear factors, such as the transcription complex, more access to a genetic locus. In agreement with this is the fact that acetylated chromatin has long been associated with states of transcriptional activation. Specific recognition of N6-acetyl-L-lysine is a conserved function of all bromodomains found in different proteins, recognized as an emerging intracellular signalling mechanism that plays critical roles in regulating gene transcription, cell-cycle progression, apoptosis, DNA repair, and cytoskeletal organization (PMID: 9169194 , 10827952 , 17340003 , 16247734 , 9478947 , 10839822 ). N-acetylated amino acids, such as N-epsilon-Acetyl-L-lysine can be released by an N-acylpeptide hydrolase from histones going through proteolytic degradation (PMID: 16465618). Many N-acetylamino acids are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Isolated from sugarbeet (Beta vulgaris) KEIO_ID A174 Nepsilon-Acetyl-L-lysine is a derivative of the amino acid lysine.

   

N-Acetylarylamine

N-Acetylaminobenzene

C8H9NO (135.0684)


N-Acetylarylamine is an odourless solid chemical of leaf or flake-like appearance. It is also known as acetanilide, N-phenylacetamide, acetanil, or acetanilid, and was formerly known by the trade name Antifebrin. N-Acetylarylamine has analgesic and fever-reducing properties; it is in the same class of drugs as acetaminophen (paracetamol). Under the name acetanilid it formerly figured in the formula of a number of patent medicines and over the counter drugs. In 1948, Julius Axelrod and Bernard Brodie discovered that acetanilide is much more toxic in these applications than other drugs, causing methemoglobinemia and ultimately doing damage to the liver and kidneys. As such, acetanilide has largely been replaced by less toxic drugs, in particular acetaminophen, which is a metabolite of acetanilide and whose use Axelrod and Brodie suggested in the same study. Acetanilide has analgesic and fever-reducing properties; it is in the same class of drugs as acetaminophen (paracetamol). Under the name acetanilid it formerly figured in the formula of a number of patent medicines and over the counter drugs. In 1948, Julius Axelrod and Bernard Brodie discovered that acetanilide is much more toxic in these applications than other drugs, causing methemoglobinemia and ultimately doing damage to the liver and kidneys. As such, acetanilide has largely been replaced by less toxic drugs, in particular acetaminophen, which is a metabolite of acetanilide and whose use Axelrod and Brodie suggested in the same study. KEIO_ID A130

   

7-Amino-4-methylcoumarin

7-Amino-4-methylcoumarin, conjugate monoacid

C10H9NO2 (175.0633)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents CONFIDENCE standard compound; INTERNAL_ID 8840 CONFIDENCE standard compound; INTERNAL_ID 2482 CONFIDENCE standard compound; INTERNAL_ID 66

   

N6-acetyl-L-lysine

N(6)-acetyl-L-lysine

C8H16N2O3 (188.1161)


An N(6)-acyl-L-lysine where the N(6)-acyl group is specified as acetyl. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; DTERQYGMUDWYAZ-ZETCQYMHSA-N_STSL_0232_N-epsilon-Acetyl-L-lysine (N6)_8000fmol_190114_S2_LC02MS02_018; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Nepsilon-Acetyl-L-lysine is a derivative of the amino acid lysine.

   

acetanilide

N-phenylacetamide

C8H9NO (135.0684)


   

7-Amino-4-methylcoumarin

7-Amino-4-methylcoumarin

C10H9NO2 (175.0633)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents