Gene Association: SLC35D1
UniProt Search:
SLC35D1 (PROTEIN_CODING)
Function Description: solute carrier family 35 member D1
found 4 associated metabolites with current gene based on the text mining result from the pubmed database.
UDP-α-D-N-Acetylglucosamine disodium
Uridine diphosphate-N-acetylglucosamine (uridine 5-diphosphate-GlcNAc, or UDP-Glc-NAc) is an acetylated aminosugar nucleotide. UDP-GlcNAc is the donor substrate for modification of nucleocytoplasmic proteins at serine and threonine residues with N-acetylglucosamine (O-GlcNAc). Nutrient sensing in mammals is done through the hexosamine biosynthetic pathway (HSP), which produces uridine 5-diphospho-N-acetylglucosamine (UDP-Glc-NAc) as its end product. Mammals respond to nutrient excess by activating O-GlcNAcylation (addition of O-linked N-acetylglucosamine). O-GlcNAc addition (and removal) is key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. (PMID: 16317114) Due to the chemical makeup of UDP-GlcNAc, it is well positioned to serve as a glucose sensor in that it is a high-energy compound that requires and/or responds to glucose, amino acid, fatty acid and nucleotide metabolism for synthesis. Elevated levels of O-GlcNAc have an effect on insulin-stimulated glucose uptake. (PMID: 12678487). Uridine 5-diphosphate-GlcNAc (UDP-Glc-NAc )respond to nutrient excess to activate O-GlcNAcylation (addition of O-linked N-acetylglucosamine) in the hexosamine signaling pathway (HSP). O-GlcNAc addition (and removal) is key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. (PMID: 16317114) Acquisition and generation of the data is financially supported in part by CREST/JST.
Uridine diphosphate glucuronic acid
Uridine diphosphate glucuronic acid, also known as udpglucuronate or udp-D-glucuronic acid, is a member of the class of compounds known as pyrimidine nucleotide sugars. Pyrimidine nucleotide sugars are pyrimidine nucleotides bound to a saccharide derivative through the terminal phosphate group. Uridine diphosphate glucuronic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Uridine diphosphate glucuronic acid can be synthesized from alpha-D-glucuronic acid. Uridine diphosphate glucuronic acid can also be synthesized into UDP-2,3-diacetamido-2,3-dideoxy-alpha-D-glucuronic acid. Uridine diphosphate glucuronic acid can be found in a number of food items such as parsley, chervil, black mulberry, and malabar plum, which makes uridine diphosphate glucuronic acid a potential biomarker for the consumption of these food products. Uridine diphosphate glucuronic acid can be found primarily in human liver tissue. Uridine diphosphate glucuronic acid exists in all living species, ranging from bacteria to humans. In humans, uridine diphosphate glucuronic acid is involved in several metabolic pathways, some of which include etoposide metabolism pathway, estrone metabolism, tamoxifen action pathway, and androgen and estrogen metabolism. Uridine diphosphate glucuronic acid is also involved in several metabolic disorders, some of which include porphyria variegata (PV), glycogenosis, type III. cori disease, debrancher glycogenosis, 17-beta hydroxysteroid dehydrogenase III deficiency, and hereditary coproporphyria (HCP). Uridine diphosphate glucuronic acid is made from UDP-glucose by UDP-glucose 6-dehydrogenase (EC 1.1.1.22) using NAD+ as a cofactor. It is the source of the glucuronosyl group in glucuronosyltransferase reactions . Uridine diphosphate glucuronic acid is a nucleoside diphosphate sugar which serves as a source of glucuronic acid for polysaccharide biosynthesis. It may also be epimerized to UDP Iduronic acid, which donates Iduronic acid to polysaccharides. In animals, UDP glucuronic acid is used for formation of many glucosiduronides with various aglycones. The transfer of glucuronic acid from UDP-alpha-D-glucuronic acid onto a terminal galactose residue is done by beta1,3-glucuronosyltransferases, responsible for the completion of the protein-glycosaminoglycan linkage region of proteoglycans and of the HNK1 epitope of glycoproteins and glycolipids. In humans the enzyme galactose-beta-1,3-glucuronosyltransferase I completes the synthesis of the common linker region of glycosaminoglycans (GAGs) by transferring glucuronic acid (GlcA) onto the terminal galactose of the glycopeptide primer of proteoglycans. The GAG chains of proteoglycans regulate major biological processes such as cell proliferation and recognition, extracellular matrix deposition, and morphogenesis. (PMID:16815917). Acquisition and generation of the data is financially supported in part by CREST/JST.
URIDINE-diphosphATE-N-acetylglucosamine
A UDP-amino sugar having N-acetyl-alpha-D-glucosamine as the amino sugar component.