Gene Association: LST1
UniProt Search:
LST1 (PROTEIN_CODING)
Function Description: leukocyte specific transcript 1
found 7 associated metabolites with current gene based on the text mining result from the pubmed database.
Phlorizin
Phlorizin, also known as phlorizoside or phlorrhizen, belongs to the class of organic compounds known as flavonoid o-glycosides. Flavonoid O-glycosides are compounds containing a carbohydrate moiety which is O-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Phlorizin (also referred to as phloridzin; chemical name phloretin-2-‚âà√≠‚Äö√¢¬ß-D-glucopyranoside) is a glucoside of phloretin, a dihydrochalcone, a family of bicyclic flavonoids, which in turn is a subgroup in the diverse phenylpropanoid synthesis pathway in plants. In humans, phlorizin is involved in lactose degradation. Phlorizin is a bitter tasting compound. phlorizin is found, on average, in the highest concentration in a few different foods, such as mexican oregano, european plums, and apples and in a lower concentration in pomegranates and apricots. phlorizin has also been detected, but not quantified, in several different foods, such as epazotes, durians, chinese broccoli, sesames, and sweet potato. This could make phlorizin a potential biomarker for the consumption of these foods. It is of sweet taste and contains four molecules of water in the crystal. Phlorizin is found primarily in unripe Malus (apple), root bark of apple, trace amounts have been found in strawberry. It is poorly soluble in ether and cold water, but soluble in ethanol and hot water. Closely related species, such as pear (Pyrus communis), cherry, and other fruit trees in the Rosaceae do not contain phloridzin. Phlorizin was studied as a potential pharmaceutical treatment for type 2 diabetes, but has since been superseded by more selective and more promising synthetic analogs, such as empagliflozin, canagliflozin and dapagliflozin. Phlorizin is a competitive inhibitor of SGLT1 and SGLT2 because it competes with D-glucose for binding to the carrier; this reduces renal glucose transport, lowering the amount of glucose in the blood. Phlorizin is not an effective drug because when orally consumed, it is nearly entirely converted into phloretin by hydrolytic enzymes in the small intestine. Above 200 °C, it decomposes. Phlorizin is an aryl beta-D-glucoside that is phloretin attached to a beta-D-glucopyranosyl residue at position 2 via a glycosidic linkage. It has a role as a plant metabolite and an antioxidant. It is an aryl beta-D-glucoside, a member of dihydrochalcones and a monosaccharide derivative. It is functionally related to a phloretin. Phlorizin is a natural product found in Malus doumeri, Vaccinium macrocarpon, and other organisms with data available. See also: ... View More ... An aryl beta-D-glucoside that is phloretin attached to a beta-D-glucopyranosyl residue at position 2 via a glycosidic linkage. Isolated from apple leaves and bark Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor. Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor.
Narirutin
Narirutin is a disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an anti-inflammatory agent, an antioxidant and a metabolite. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a rutinoside. It is functionally related to a (S)-naringenin. Narirutin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. See also: Tangerine peel (part of). obtained from Camellia sinensis (tea). Narirutin is found in many foods, some of which are lemon, globe artichoke, grapefruit, and grapefruit/pummelo hybrid. Narirutin is found in globe artichoke. Narirutin is obtained from Camellia sinensis (tea Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2]. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2].
Sinapyl alcohol
Sinapyl alcohol is an organic compound derived from cinnamic acid. This phytochemical is one of the monolignols. It is biosynthetized via the phenylpropanoid biochemical pathway, its immediate precursor being sinapaldehyde. Sinapyl alcohol is a precursor to lignin or lignans. It is also a biosynthetic precursor to various stilbenes and coumarins.[From Wiki].
Narirutin
Narirutin is a disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an anti-inflammatory agent, an antioxidant and a metabolite. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a rutinoside. It is functionally related to a (S)-naringenin. Narirutin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. See also: Tangerine peel (part of). A disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2]. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2].
sinapyl alcohol
A primary alcohol, being cinnamyl alcohol hydroxylated at C-4 and methoxylated at C-3 and -5. Sinapyl alcohol, also known as 4-(3-hydroxy-1-propenyl)-2,6-dimethoxy-phenol or 4-hydroxy-3,5-dimethoxycinnamyl alcohol, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Sinapyl alcohol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Sinapyl alcohol can be found in a number of food items such as ginseng, endive, sea-buckthornberry, and white cabbage, which makes sinapyl alcohol a potential biomarker for the consumption of these food products. Sinapyl alcohol is an organic compound structurally related to cinnamic acid. It is biosynthetized via the phenylpropanoid biochemical pathway, its immediate precursor being sinapaldehyde. This phytochemical is one of the monolignols, which are precursor to lignin or lignans. It is also a biosynthetic precursor to various stilbenoids and coumarins .