Chemical Formula: C9H16O9
Chemical Formula C9H16O9
Found 27 metabolite its formula value is C9H16O9
3-Deoxy-D-glycero-D-galacto-2-nonulosonic acid
3-Deoxy-D-glycero-D-galacto-2-nonulosonic acid (KDN) is a sialic acid (Sia) that is ubiquitously expressed in vertebrates during normal development and tumorigenesis. Its expression is thought to be regulated by multiple biosynthetic steps catalyzed by several enzymes, including CMP-Sia synthetase. (PMID 11479279) Sialic acids are frequently the terminal sugars on secreted and cell surface glycoproteins and glycolipids, and their presence can have considerable influence on the biological properties of a cell. For example, the temporal appearance and disappearance of polysialic polymers has been intimately linked with the proper development of neural tissues during embryogenesis. In pathogenic diseases, including meningitis and gastric inflammation, particular microbes recognize cell surface sialic acids when invading host cells. Sialic acid residues can also mask recognition sites such as galactose residues on glycoproteins to prevent their in vivo removal by asialoglycoprotein receptors. In certain cancers, changes in sialic acid amounts, types, and linkages have been associated with tumorogenesis and cancer metastasis. (PMID 10749855) [HMDB] 3-Deoxy-D-glycero-D-galacto-2-nonulosonic acid (KDN) is a sialic acid (Sia) that is ubiquitously expressed in vertebrates during normal development and tumorigenesis. Its expression is thought to be regulated by multiple biosynthetic steps catalyzed by several enzymes, including CMP-Sia synthetase. (PMID 11479279) Sialic acids are frequently the terminal sugars on secreted and cell surface glycoproteins and glycolipids, and their presence can have considerable influence on the biological properties of a cell. For example, the temporal appearance and disappearance of polysialic polymers has been intimately linked with the proper development of neural tissues during embryogenesis. In pathogenic diseases, including meningitis and gastric inflammation, particular microbes recognize cell surface sialic acids when invading host cells. Sialic acid residues can also mask recognition sites such as galactose residues on glycoproteins to prevent their in vivo removal by asialoglycoprotein receptors. In certain cancers, changes in sialic acid amounts, types, and linkages have been associated with tumorogenesis and cancer metastasis. (PMID 10749855).
3-Deoxy-D-glycero-D-galacto-2-nonulosonic acid
(2R)-3-Hydroxy-2-(beta-D-mannopyranosyloxy)propanoic acid
[3,4,5,6-Tetrahydroxy-6-(hydroxymethyl)oxan-2-yl] 2-hydroxypropanoate
[2,3,4,5-Tetrahydroxy-6-(hydroxymethyl)oxan-2-yl] 2-hydroxypropanoate
[(2S,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] 2,3-dihydroxypropanoate
3-deoxy-D-glycero-beta-D-galacto-nonulosonic acid
A deaminoneuraminic acid in which the anomeric centre has beta-configuration.
2-(alpha-D-mannosyl)-D-glyceric acid
A D-mannosyl-D-glyceric acid where an alpha-D-mannosyl residue is attached at the 2-position.