Chemical Formula: C83H152O17P2

Chemical Formula C83H152O17P2

Found 55 metabolite its formula value is C83H152O17P2

CL(20:1(11Z)/18:2(9Z,12Z)/18:1(11Z)/18:1(11Z))

[3-({[(2R)-2,3-bis[(11Z)-octadec-11-enoyloxy]propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(20:1(11Z)/18:2(9Z,12Z)/18:1(11Z)/18:1(11Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(20:1(11Z)/18:2(9Z,12Z)/18:1(11Z)/18:1(11Z)) contains one chain of (11Z-eicosenoyl) at the C1 position, one chain of (9Z,12Z-octadecadienoyl) at the C2 position, two chains of (11Z-octadecenoyl) at the C3 and C4 positions fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238). CL(20:1(11Z)/18:2(9Z,12Z)/18:1(11Z)/18:1(11Z)) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. [HMDB]

   

CL(20:1(11Z)/18:2(9Z,12Z)/18:1(11Z)/18:1(9Z))

[2-hydroxy-3-({hydroxy[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)propoxy][(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(20:1(11Z)/18:2(9Z,12Z)/18:1(11Z)/18:1(9Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(20:1(11Z)/18:2(9Z,12Z)/18:1(11Z)/18:1(9Z)) contains one chain of (11Z-eicosenoyl) at the C1 position, one chain of (9Z,12Z-octadecadienoyl) at the C2 position, one chain of (11Z-octadecenoyl) at the C3 position, one chain of (9Z-octadecenoyl) at the C4 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238). CL(20:1(11Z)/18:2(9Z,12Z)/18:1(11Z)/18:1(9Z)) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. [HMDB]

   

CL(20:1(11Z)/18:2(9Z,12Z)/18:1(9Z)/18:1(11Z))

[2-hydroxy-3-({hydroxy[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphoryl}oxy)propoxy][(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(20:1(11Z)/18:2(9Z,12Z)/18:1(9Z)/18:1(11Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(20:1(11Z)/18:2(9Z,12Z)/18:1(9Z)/18:1(11Z)) contains one chain of (11Z-eicosenoyl) at the C1 position, one chain of (9Z,12Z-octadecadienoyl) at the C2 position, one chain of (9Z-octadecenoyl) at the C3 position, one chain of (11Z-octadecenoyl) at the C4 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238). CL(20:1(11Z)/18:2(9Z,12Z)/18:1(9Z)/18:1(11Z)) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. [HMDB]

   

CL(20:1(11Z)/18:2(9Z,12Z)/18:1(9Z)/18:1(9Z))

[(2R)-2,3-bis[(9Z)-octadec-9-enoyloxy]propoxy][2-hydroxy-3-({hydroxy[(2R)-3-[(11Z)-icos-11-enoyloxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyloxy]propoxy]phosphoryl}oxy)propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(20:1(11Z)/18:2(9Z,12Z)/18:1(9Z)/18:1(9Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(20:1(11Z)/18:2(9Z,12Z)/18:1(9Z)/18:1(9Z)) contains one chain of (11Z-eicosenoyl) at the C1 position, one chain of (9Z,12Z-octadecadienoyl) at the C2 position, two chains of (9Z-octadecenoyl) at the C3 and C4 positions fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238). CL(20:1(11Z)/18:2(9Z,12Z)/18:1(9Z)/18:1(9Z)) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. [HMDB]

   

CL(16:0/18:0/18:0/22:5(4Z,7Z,10Z,13Z,16Z))

[(2R)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-(octadecanoyloxy)propoxy][(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(16:0/18:0/18:0/22:5(4Z,7Z,10Z,13Z,16Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(16:0/18:0/18:0/22:5(4Z,7Z,10Z,13Z,16Z)) contains one chain of hexadecanoic acid at the C1 position, two chains of octadecanoic acid at the C2 and C3 positions, one chain of (4Z,7Z,10Z,13Z,16Z-docosapentaenoyl) at the C4 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(16:0/18:0/18:0/22:5(7Z,10Z,13Z,16Z,19Z))

[(2R)-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-3-(octadecanoyloxy)propoxy][(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(16:0/18:0/18:0/22:5(7Z,10Z,13Z,16Z,19Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(16:0/18:0/18:0/22:5(7Z,10Z,13Z,16Z,19Z)) contains one chain of hexadecanoic acid at the C1 position, two chains of octadecanoic acid at the C2 and C3 positions, one chain of (7Z,10Z,13Z,16Z,19Z-docosapentaenoyl) at the C4 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(16:0/18:0/22:5(4Z,7Z,10Z,13Z,16Z)/18:0)

[(2R)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-(octadecanoyloxy)propoxy][(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(16:0/18:0/22:5(4Z,7Z,10Z,13Z,16Z)/18:0) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(16:0/18:0/22:5(4Z,7Z,10Z,13Z,16Z)/18:0) contains one chain of hexadecanoic acid at the C1 position, two chains of octadecanoic acid at the C2 and C4 positions, one chain of (4Z,7Z,10Z,13Z,16Z-docosapentaenoyl) at the C3 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(16:0/18:0/22:5(7Z,10Z,13Z,16Z,19Z)/18:0)

[(2R)-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-2-(octadecanoyloxy)propoxy][(2S)-3-({[(2R)-3-(hexadecanoyloxy)-2-(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(16:0/18:0/22:5(7Z,10Z,13Z,16Z,19Z)/18:0) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(16:0/18:0/22:5(7Z,10Z,13Z,16Z,19Z)/18:0) contains one chain of hexadecanoic acid at the C1 position, two chains of octadecanoic acid at the C2 and C4 positions, one chain of (7Z,10Z,13Z,16Z,19Z-docosapentaenoyl) at the C3 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(16:0/22:5(4Z,7Z,10Z,13Z,16Z)/18:0/18:0)

[(2R)-3-({[(2R)-2,3-bis(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-(hexadecanoyloxy)propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(16:0/22:5(4Z,7Z,10Z,13Z,16Z)/18:0/18:0) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(16:0/22:5(4Z,7Z,10Z,13Z,16Z)/18:0/18:0) contains one chain of hexadecanoic acid at the C1 position, one chain of (4Z,7Z,10Z,13Z,16Z-docosapentaenoyl) at the C2 position, two chains of octadecanoic acid at the C3 and C4 positions fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(16:0/22:5(7Z,10Z,13Z,16Z,19Z)/18:0/18:0)

[(2R)-3-({[(2R)-2,3-bis(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-3-(hexadecanoyloxy)propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(16:0/22:5(7Z,10Z,13Z,16Z,19Z)/18:0/18:0) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(16:0/22:5(7Z,10Z,13Z,16Z,19Z)/18:0/18:0) contains one chain of hexadecanoic acid at the C1 position, one chain of (7Z,10Z,13Z,16Z,19Z-docosapentaenoyl) at the C2 position, two chains of octadecanoic acid at the C3 and C4 positions fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/16:0/18:0/22:5(4Z,7Z,10Z,13Z,16Z))

[(2R)-2-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-3-(octadecanoyloxy)propoxy][(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/16:0/18:0/22:5(4Z,7Z,10Z,13Z,16Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/16:0/18:0/22:5(4Z,7Z,10Z,13Z,16Z)) contains two chains of octadecanoic acid at the C1 and C3 positions, one chain of hexadecanoic acid at the C2 position, one chain of (4Z,7Z,10Z,13Z,16Z-docosapentaenoyl) at the C4 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/16:0/18:0/22:5(7Z,10Z,13Z,16Z,19Z))

[(2R)-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-3-(octadecanoyloxy)propoxy][(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/16:0/18:0/22:5(7Z,10Z,13Z,16Z,19Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/16:0/18:0/22:5(7Z,10Z,13Z,16Z,19Z)) contains two chains of octadecanoic acid at the C1 and C3 positions, one chain of hexadecanoic acid at the C2 position, one chain of (7Z,10Z,13Z,16Z,19Z-docosapentaenoyl) at the C4 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/16:0/22:5(4Z,7Z,10Z,13Z,16Z)/18:0)

[(2R)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-(octadecanoyloxy)propoxy][(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/16:0/22:5(4Z,7Z,10Z,13Z,16Z)/18:0) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/16:0/22:5(4Z,7Z,10Z,13Z,16Z)/18:0) contains two chains of octadecanoic acid at the C1 and C4 positions, one chain of hexadecanoic acid at the C2 position, one chain of (4Z,7Z,10Z,13Z,16Z-docosapentaenoyl) at the C3 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/16:0/22:5(7Z,10Z,13Z,16Z,19Z)/18:0)

[(2R)-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-2-(octadecanoyloxy)propoxy][(2S)-3-({[(2R)-2-(hexadecanoyloxy)-3-(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/16:0/22:5(7Z,10Z,13Z,16Z,19Z)/18:0) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/16:0/22:5(7Z,10Z,13Z,16Z,19Z)/18:0) contains two chains of octadecanoic acid at the C1 and C4 positions, one chain of hexadecanoic acid at the C2 position, one chain of (7Z,10Z,13Z,16Z,19Z-docosapentaenoyl) at the C3 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/18:0/18:1(11Z)/20:4(5Z,8Z,11Z,14Z))

[(2S)-3-({[(2R)-2,3-bis(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-[(11Z)-octadec-11-enoyloxy]propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/18:0/18:1(11Z)/20:4(5Z,8Z,11Z,14Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/18:0/18:1(11Z)/20:4(5Z,8Z,11Z,14Z)) contains two chains of octadecanoic acid at the C1 and C2 positions, one chain of (11Z-octadecenoyl) at the C3 position, one chain of (5Z,8Z,11Z,14Z-eicosatetraenoyl) at the C4 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/18:0/18:1(9Z)/20:4(5Z,8Z,11Z,14Z))

[(2S)-3-({[(2R)-2,3-bis(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/18:0/18:1(9Z)/20:4(5Z,8Z,11Z,14Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/18:0/18:1(9Z)/20:4(5Z,8Z,11Z,14Z)) contains two chains of octadecanoic acid at the C1 and C2 positions, one chain of (9Z-octadecenoyl) at the C3 position, one chain of (5Z,8Z,11Z,14Z-eicosatetraenoyl) at the C4 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/18:1(11Z))

[(2S)-3-({[(2R)-2,3-bis(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-[(11Z)-octadec-11-enoyloxy]propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/18:1(11Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/18:1(11Z)) contains two chains of octadecanoic acid at the C1 and C2 positions, one chain of (5Z,8Z,11Z,14Z-eicosatetraenoyl) at the C3 position, one chain of (11Z-octadecenoyl) at the C4 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/18:1(9Z))

[(2S)-3-({[(2R)-2,3-bis(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-[(9Z)-octadec-9-enoyloxy]propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/18:1(9Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/18:1(9Z)) contains two chains of octadecanoic acid at the C1 and C2 positions, one chain of (5Z,8Z,11Z,14Z-eicosatetraenoyl) at the C3 position, one chain of (9Z-octadecenoyl) at the C4 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/18:0/22:5(4Z,7Z,10Z,13Z,16Z)/16:0)

[(2S)-3-({[(2R)-2,3-bis(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-(hexadecanoyloxy)propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/18:0/22:5(4Z,7Z,10Z,13Z,16Z)/16:0) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/18:0/22:5(4Z,7Z,10Z,13Z,16Z)/16:0) contains two chains of octadecanoic acid at the C1 and C2 positions, one chain of (4Z,7Z,10Z,13Z,16Z-docosapentaenoyl) at the C3 position, one chain of hexadecanoic acid at the C4 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/18:0/22:5(7Z,10Z,13Z,16Z,19Z)/16:0)

[(2S)-3-({[(2R)-2,3-bis(octadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)-2-hydroxypropoxy][(2R)-3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyloxy]-2-(hexadecanoyloxy)propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/18:0/22:5(7Z,10Z,13Z,16Z,19Z)/16:0) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/18:0/22:5(7Z,10Z,13Z,16Z,19Z)/16:0) contains two chains of octadecanoic acid at the C1 and C2 positions, one chain of (7Z,10Z,13Z,16Z,19Z-docosapentaenoyl) at the C3 position, one chain of hexadecanoic acid at the C4 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/18:1(11Z)/18:0/20:4(5Z,8Z,11Z,14Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-(octadecanoyloxy)propoxy]phosphoryl}oxy)propoxy][(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-(octadecanoyloxy)propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/18:1(11Z)/18:0/20:4(5Z,8Z,11Z,14Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/18:1(11Z)/18:0/20:4(5Z,8Z,11Z,14Z)) contains two chains of octadecanoic acid at the C1 and C3 positions, one chain of (11Z-octadecenoyl) at the C2 position, one chain of (5Z,8Z,11Z,14Z-eicosatetraenoyl) at the C4 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/18:1(11Z)/20:4(5Z,8Z,11Z,14Z)/18:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(11Z)-octadec-11-enoyloxy]-3-(octadecanoyloxy)propoxy]phosphoryl}oxy)propoxy][(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-(octadecanoyloxy)propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/18:1(11Z)/20:4(5Z,8Z,11Z,14Z)/18:0) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/18:1(11Z)/20:4(5Z,8Z,11Z,14Z)/18:0) contains two chains of octadecanoic acid at the C1 and C4 positions, one chain of (11Z-octadecenoyl) at the C2 position, one chain of (5Z,8Z,11Z,14Z-eicosatetraenoyl) at the C3 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/18:1(9Z)/18:0/20:4(5Z,8Z,11Z,14Z))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-(octadecanoyloxy)propoxy]phosphoryl}oxy)propoxy][(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-(octadecanoyloxy)propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/18:1(9Z)/18:0/20:4(5Z,8Z,11Z,14Z)) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/18:1(9Z)/18:0/20:4(5Z,8Z,11Z,14Z)) contains two chains of octadecanoic acid at the C1 and C3 positions, one chain of (9Z-octadecenoyl) at the C2 position, one chain of (5Z,8Z,11Z,14Z-eicosatetraenoyl) at the C4 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/18:1(9Z)/20:4(5Z,8Z,11Z,14Z)/18:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(9Z)-octadec-9-enoyloxy]-3-(octadecanoyloxy)propoxy]phosphoryl}oxy)propoxy][(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-(octadecanoyloxy)propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/18:1(9Z)/20:4(5Z,8Z,11Z,14Z)/18:0) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/18:1(9Z)/20:4(5Z,8Z,11Z,14Z)/18:0) contains two chains of octadecanoic acid at the C1 and C4 positions, one chain of (9Z-octadecenoyl) at the C2 position, one chain of (5Z,8Z,11Z,14Z-eicosatetraenoyl) at the C3 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/20:4(5Z,8Z,11Z,14Z)/18:1(11Z)/18:0)

[(2R)-2-hydroxy-3-({hydroxy[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-(octadecanoyloxy)propoxy]phosphoryl}oxy)propoxy][(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-(octadecanoyloxy)propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/20:4(5Z,8Z,11Z,14Z)/18:1(11Z)/18:0) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/20:4(5Z,8Z,11Z,14Z)/18:1(11Z)/18:0) contains two chains of octadecanoic acid at the C1 and C4 positions, one chain of (5Z,8Z,11Z,14Z-eicosatetraenoyl) at the C2 position, one chain of (11Z-octadecenoyl) at the C3 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:0/20:4(5Z,8Z,11Z,14Z)/18:1(9Z)/18:0)

[(2R)-2-hydroxy-3-({hydroxy[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-(octadecanoyloxy)propoxy]phosphoryl}oxy)propoxy][(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-(octadecanoyloxy)propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:0/20:4(5Z,8Z,11Z,14Z)/18:1(9Z)/18:0) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:0/20:4(5Z,8Z,11Z,14Z)/18:1(9Z)/18:0) contains two chains of octadecanoic acid at the C1 and C4 positions, one chain of (5Z,8Z,11Z,14Z-eicosatetraenoyl) at the C2 position, one chain of (9Z-octadecenoyl) at the C3 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:1(11Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(11Z)-octadec-11-enoyloxy]-2-(octadecanoyloxy)propoxy]phosphoryl}oxy)propoxy][(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-(octadecanoyloxy)propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:1(11Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:0) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:1(11Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:0) contains one chain of (11Z-octadecenoyl) at the C1 position, two chains of octadecanoic acid at the C2 and C4 positions, one chain of (5Z,8Z,11Z,14Z-eicosatetraenoyl) at the C3 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(18:1(9Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(9Z)-octadec-9-enoyloxy]-2-(octadecanoyloxy)propoxy]phosphoryl}oxy)propoxy][(2R)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-2-(octadecanoyloxy)propoxy]phosphinic acid

C83H152O17P2 (1483.0504202)


CL(18:1(9Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:0) is a cardiolipin (CL). Cardiolipins are sometimes called double phospholipids because they have four fatty acid tails, instead of the usual two. They are glycerophospholipids in which the O1 and O3 oxygen atoms of the central glycerol moiety are each linked to one 1,3-diacylglyerol chain. Their general formula is OC(COP(O)(=O)OC[C@@H](CO[R1])O[R2])COP(O)(=O)OC[C@@H](CO[R3])O[R4], where R1-R4 are four fatty acyl chains. CL(18:1(9Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:0) contains one chain of (9Z-octadecenoyl) at the C1 position, two chains of octadecanoic acid at the C2 and C4 positions, one chain of (5Z,8Z,11Z,14Z-eicosatetraenoyl) at the C3 position fatty acids. Cardiolipins are known to be present in all mammalian cells, especially cells with a high number of mitochondria. De novo synthesis of Cardiolipins begins with condensing phosphatidic acid (PA) with cytidine-5’-triphosphate (CTP) to form cytidine-diphosphate-1,2-diacyl-sn-glycerol (CDP-DG). Glycerol-3-phosphate is subsequently added to this newly formed CDP-DG molecule to form phosphatidylglycerol phosphate (PGP), which is immediately dephosphorylated to form PG. The final step is the process of condensing the PG molecule with another CDP-DG molecule to form a new cardiolipin, which is catalyzed by cardiolipin synthase. All new cardiolipins immediately undergo a series remodeling resulting in the common cardiolipin compositions. (PMID: 16442164). Cardiolipin synthase shows no selectivity for fatty acyl chains used in the de novo synthesis of cardiolipin (PMID: 16442164). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20\\% of the total lipid. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane and are important for mitochondrial respiratory capacity. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. Tafazzin is an important enzyme in the remodeling of cardiolipins, and in contrast to cardiolipin synthase, it shows strong acyl specificity. This suggests that the specificity in cardiolipin composition is achieved through the remodeling steps. Mutation in the tafazzin gene disrupts the remodeling of cardiolipins and is the cause of Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity. As a result, there are many potential cardiolipin species that can exist (PMID: 16226238).

   

CL(74:5)

1-[1-Eicosenoyl-2-linoleoyl-sn-glycero-3-phospho],3-[1,2-divaccenoyl-rac-glycero-3-phospho]-glycerol

C83H152O17P2 (1483.0504202)


   

CL 74:5

1-[1-eicosanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phospho],3-[1-(9Z,12Z-octadecadienoyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phospho]-sn-glycerol

C83H152O17P2 (1483.0504202)


   

[3-[[3-[2,3-di(octadecanoyloxy)propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hexadecanoyloxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[3-[[3-[2,3-di(octadecanoyloxy)propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hexadecanoyloxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C83H152O17P2 (1483.0504202)


   

[2-hexadecanoyloxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-octadecanoyloxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[2-hexadecanoyloxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-octadecanoyloxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C83H152O17P2 (1483.0504202)


   

[3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-octadecanoyloxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxy-2-octadecanoyloxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-octadecanoyloxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxy-2-octadecanoyloxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C83H152O17P2 (1483.0504202)


   

[3-[hydroxy-[2-hydroxy-3-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-octadecanoyloxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxy-2-octadecanoyloxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[3-[hydroxy-[2-hydroxy-3-[hydroxy-[3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-2-octadecanoyloxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxy-2-octadecanoyloxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[[2-hexadecanoyloxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[3-[[3-[[2-hexadecanoyloxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[(2-hexadecanoyloxy-3-octadecanoyloxypropoxy)-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[3-[[3-[(2-hexadecanoyloxy-3-octadecanoyloxypropoxy)-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[[2-hexadecanoyloxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[3-[[3-[[2-hexadecanoyloxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[2,3-di(octadecanoyloxy)propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[3-[[3-[2,3-di(octadecanoyloxy)propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C83H152O17P2 (1483.0504202)


   

[2-hexadecanoyloxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-octadecanoyloxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[2-hexadecanoyloxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-octadecanoyloxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[3-[[3-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[3-[[3-[[2-[(Z)-hexadec-9-enoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[2,3-bis[[(Z)-octadec-9-enoyl]oxy]propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hexadecanoyloxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[3-[[3-[2,3-bis[[(Z)-octadec-9-enoyl]oxy]propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-hexadecanoyloxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[2,3-bis[[(Z)-octadec-9-enoyl]oxy]propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[3-[[3-[2,3-bis[[(Z)-octadec-9-enoyl]oxy]propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[[2-[(Z)-hexadec-9-enoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[3-[[3-[[2-[(Z)-hexadec-9-enoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-octadecanoyloxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C83H152O17P2 (1483.0504202)


   

[3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-octadecanoyloxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-octadecanoyloxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[(2-hexadecanoyloxy-3-octadecanoyloxypropoxy)-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[3-[[3-[(2-hexadecanoyloxy-3-octadecanoyloxypropoxy)-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[(2-hexadecanoyloxy-3-octadecanoyloxypropoxy)-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[3-[[3-[(2-hexadecanoyloxy-3-octadecanoyloxypropoxy)-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[2,3-di(octadecanoyloxy)propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[3-[[3-[2,3-di(octadecanoyloxy)propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[2,3-di(octadecanoyloxy)propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[3-[[3-[2,3-di(octadecanoyloxy)propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[[2-[(Z)-hexadec-9-enoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[3-[[3-[[2-[(Z)-hexadec-9-enoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[2,3-di(octadecanoyloxy)propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[3-[[3-[2,3-di(octadecanoyloxy)propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C83H152O17P2 (1483.0504202)


   

[2-[(Z)-hexadec-9-enoyl]oxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-octadecanoyloxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[2-[(Z)-hexadec-9-enoyl]oxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-octadecanoyloxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[[2-hexadecanoyloxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[3-[[3-[[2-hexadecanoyloxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(Z)-octadec-9-enoyl]oxypropyl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C83H152O17P2 (1483.0504202)


   

[3-[[3-[2,3-di(octadecanoyloxy)propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[3-[[3-[2,3-di(octadecanoyloxy)propoxy-hydroxyphosphoryl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(Z)-hexadec-9-enoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C83H152O17P2 (1483.0504202)