Chemical Formula: C51H96NO8P
Chemical Formula C51H96NO8P
Found 106 metabolite its formula value is C51H96NO8P
PE(22:2(13Z,16Z)/24:1(15Z))
C51H96NO8P (881.6873185999999)
PE(22:2(13Z,16Z)/24:1(15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:2(13Z,16Z)/24:1(15Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The docosadienoic acid moiety is derived from animal fats, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE(24:1(15Z)/22:2(13Z,16Z))
C51H96NO8P (881.6873185999999)
PE(24:1(15Z)/22:2(13Z,16Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(24:1(15Z)/22:2(13Z,16Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. The nervonic acid moiety is derived from fish oils, while the docosadienoic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.
PE-NMe2(20:2(11Z,14Z)/24:1(15Z))
C51H96NO8P (881.6873185999999)
PE-NMe2(20:2(11Z,14Z)/24:1(15Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:2(11Z,14Z)/24:1(15Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:3(5Z,8Z,11Z)/24:0)
C51H96NO8P (881.6873185999999)
PE-NMe2(20:3(5Z,8Z,11Z)/24:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:3(5Z,8Z,11Z)/24:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(20:3(8Z,11Z,14Z)/24:0)
C51H96NO8P (881.6873185999999)
PE-NMe2(20:3(8Z,11Z,14Z)/24:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(20:3(8Z,11Z,14Z)/24:0), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:1(13Z)/22:2(13Z,16Z))
C51H96NO8P (881.6873185999999)
PE-NMe2(22:1(13Z)/22:2(13Z,16Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:1(13Z)/22:2(13Z,16Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(22:2(13Z,16Z)/22:1(13Z))
C51H96NO8P (881.6873185999999)
PE-NMe2(22:2(13Z,16Z)/22:1(13Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(22:2(13Z,16Z)/22:1(13Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of erucic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(24:0/20:3(5Z,8Z,11Z))
C51H96NO8P (881.6873185999999)
PE-NMe2(24:0/20:3(5Z,8Z,11Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(24:0/20:3(5Z,8Z,11Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of mead acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(24:0/20:3(8Z,11Z,14Z))
C51H96NO8P (881.6873185999999)
PE-NMe2(24:0/20:3(8Z,11Z,14Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(24:0/20:3(8Z,11Z,14Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE-NMe2(24:1(15Z)/20:2(11Z,14Z))
C51H96NO8P (881.6873185999999)
PE-NMe2(24:1(15Z)/20:2(11Z,14Z)) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(24:1(15Z)/20:2(11Z,14Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.
PE(46:3)
C51H96NO8P (881.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (16Z,19Z,22Z)-triaconta-16,19,22-trienoate
C51H96NO8P (881.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (21Z,24Z)-dotriaconta-21,24-dienoate
C51H96NO8P (881.6873185999999)
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] (Z)-octacos-17-enoate
C51H96NO8P (881.6873185999999)
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] (Z)-triacont-19-enoate
C51H96NO8P (881.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (18Z,21Z,24Z)-dotriaconta-18,21,24-trienoate
C51H96NO8P (881.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-docosanoyloxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate
C51H96NO8P (881.6873185999999)
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] octacosanoate
C51H96NO8P (881.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octadecanoyloxypropan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate
C51H96NO8P (881.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoyl]oxypropan-2-yl] (17Z,20Z)-octacosa-17,20-dienoate
C51H96NO8P (881.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-icosanoyloxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate
C51H96NO8P (881.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (20Z,23Z,26Z)-tetratriaconta-20,23,26-trienoate
C51H96NO8P (881.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (19Z,22Z)-triaconta-19,22-dienoate
C51H96NO8P (881.6873185999999)
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] triacontanoate
C51H96NO8P (881.6873185999999)
[3-nonanoyloxy-2-[(20Z,23Z,26Z)-tetratriaconta-20,23,26-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] hexacosanoate
C51H96NO8P (881.6873185999999)
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(13Z,16Z)-docosa-13,16-dienoyl]oxypropyl] (Z)-tetracos-13-enoate
C51H96NO8P (881.6873185999999)
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] (Z)-hexacos-15-enoate
C51H96NO8P (881.6873185999999)
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxypropyl] tetracosanoate
C51H96NO8P (881.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate
C51H96NO8P (881.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoyl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate
C51H96NO8P (881.6873185999999)
[3-heptadecanoyloxy-2-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[2-[(16Z,19Z,22Z)-triaconta-16,19,22-trienoyl]oxy-3-tridecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[3-nonadecanoyloxy-2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[2-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]oxy-3-pentadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[2-[(19Z,22Z)-triaconta-19,22-dienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[2-[(18Z,21Z,24Z)-dotriaconta-18,21,24-trienoyl]oxy-3-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[2-[(17Z,20Z)-octacosa-17,20-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (22Z,25Z,28Z)-hexatriaconta-22,25,28-trienoate
C51H96NO8P (881.6873185999999)
[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(Z)-henicos-11-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-henicosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[3-[(Z)-heptadec-9-enoyl]oxy-2-[(15Z,18Z)-hexacosa-15,18-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[3-heptacosanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[3-[(Z)-nonadec-9-enoyl]oxy-2-[(13Z,16Z)-tetracosa-13,16-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-pentacosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[3-[(Z)-docos-13-enoyl]oxy-2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(Z)-hexacos-15-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[(Z)-tetracos-13-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-[(5E,9E)-hexacosa-5,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-11-enoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate
C51H96NO8P (881.6873185999999)
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5E,8E)-icosa-5,8-dienoyl]oxypropan-2-yl] (E)-hexacos-5-enoate
C51H96NO8P (881.6873185999999)
[(2R)-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-2-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropan-2-yl] hexacosanoate
C51H96NO8P (881.6873185999999)
[(2R)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-pentacosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[(2R)-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-2-[(E)-hexacos-5-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[(2R)-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-2-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropan-2-yl] (E)-hexacos-5-enoate
C51H96NO8P (881.6873185999999)
[(2R)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-pentacosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-[(E)-hexacos-5-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,8E)-icosa-5,8-dienoyl]oxypropyl] (E)-hexacos-5-enoate
C51H96NO8P (881.6873185999999)
[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-tricosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-pentacosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] hexacosanoate
C51H96NO8P (881.6873185999999)
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-icos-13-enoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate
C51H96NO8P (881.6873185999999)
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(13E,16E)-docosa-13,16-dienoyl]oxypropyl] (E)-tetracos-15-enoate
C51H96NO8P (881.6873185999999)
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropan-2-yl] hexacosanoate
C51H96NO8P (881.6873185999999)
[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13E,16E)-docosa-13,16-dienoyl]oxypropan-2-yl] (E)-tetracos-15-enoate
C51H96NO8P (881.6873185999999)
[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-pentacosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[(2R)-3-[(E)-heptadec-9-enoyl]oxy-2-[(5E,9E)-hexacosa-5,9-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C51H96NO8P (881.6873185999999)
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-icos-11-enoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate
C51H96NO8P (881.6873185999999)
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] hexacosanoate
C51H96NO8P (881.6873185999999)
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-icos-13-enoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate
C51H96NO8P (881.6873185999999)
[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(11E,14E)-icosa-11,14-dienoyl]oxypropyl] (E)-hexacos-5-enoate
C51H96NO8P (881.6873185999999)
PC(43:3)
C51H96NO8P (881.6873185999999)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved