Chemical Formula: C46H86NO7P

Chemical Formula C46H86NO7P

Found 124 metabolite its formula value is C46H86NO7P

PC(20:2(11Z,14Z)/P-18:1(11Z))

[2-({3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]propyl phosphonato}oxy)ethyl]trimethylazanium

C46H86NO7P (795.6141576)


PC(20:2(11Z,14Z)/P-18:1(11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:2(11Z,14Z)/P-18:1(11Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of plasmalogen 18:1n7 at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PC(20:2(11Z,14Z)/P-18:1(9Z))

[2-({3-[(11Z,14Z)-icosa-11,14-dienoyloxy]-2-[(1Z,9Z)-octadeca-1,9-dien-1-yloxy]propyl phosphonato}oxy)ethyl]trimethylazanium

C46H86NO7P (795.6141576)


PC(20:2(11Z,14Z)/P-18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:2(11Z,14Z)/P-18:1(9Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(20:2(11Z,14Z)/P-18:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:2(11Z,14Z)/P-18:1(9Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of plasmalogen 18:1n9 at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(20:3(5Z,8Z,11Z)/P-18:0)

[2-({3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-2-[(1Z)-octadec-1-en-1-yloxy]propyl phosphonato}oxy)ethyl]trimethylazanium

C46H86NO7P (795.6141576)


PC(20:3(5Z,8Z,11Z)/P-18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(5Z,8Z,11Z)/P-18:0), in particular, consists of one chain of mead acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The mead acid moiety is derived from fish oils, liver and kidney, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PC(20:3(8Z,11Z,14Z)/P-18:0)

[2-({3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-2-[(1Z)-octadec-1-en-1-yloxy]propyl phosphonato}oxy)ethyl]trimethylazanium

C46H86NO7P (795.6141576)


PC(20:3(8Z,11Z,14Z)/P-18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(20:3(8Z,11Z,14Z)/P-18:0), in particular, consists of one chain of homo-g-linolenic acid at the C-1 position and one chain of plasmalogen 18:0 at the C-2 position. The homo-g-linolenic acid moiety is derived from fish oils, liver and kidney, while the plasmalogen 18:0 moiety is derived from animal fats, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PC(P-18:0/20:3(5Z,8Z,11Z))

(2-{[(2R)-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]-3-[(1Z)-octadec-1-en-1-yloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H86NO7P (795.6141576)


PC(P-18:0/20:3(5Z,8Z,11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:0/20:3(5Z,8Z,11Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of mead acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(P-18:0/20:3(5Z,8Z,11Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:0/20:3(5Z,8Z,11Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of mead acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the mead acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(P-18:0/20:3(8Z,11Z,14Z))

(2-{[(2R)-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]-3-[(1Z)-octadec-1-en-1-yloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H86NO7P (795.6141576)


PC(P-18:0/20:3(8Z,11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:0/20:3(8Z,11Z,14Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(P-18:0/20:3(8Z,11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:0/20:3(8Z,11Z,14Z)), in particular, consists of one chain of plasmalogen 18:0 at the C-1 position and one chain of homo-g-linolenic acid at the C-2 position. The plasmalogen 18:0 moiety is derived from animal fats, liver and kidney, while the homo-g-linolenic acid moiety is derived from fish oils, liver and kidney. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(P-18:1(11Z)/20:2(11Z,14Z))

(2-{[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H86NO7P (795.6141576)


PC(P-18:1(11Z)/20:2(11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(11Z)/20:2(11Z,14Z)), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

PC(P-18:1(9Z)/20:2(11Z,14Z))

(2-{[(2R)-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]-3-[(1Z,9Z)-octadeca-1,9-dien-1-yloxy]propyl phosphonato]oxy}ethyl)trimethylazanium

C46H86NO7P (795.6141576)


PC(P-18:1(9Z)/20:2(11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(9Z)/20:2(11Z,14Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. PC(P-18:1(9Z)/20:2(11Z,14Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(9Z)/20:2(11Z,14Z)), in particular, consists of one chain of plasmalogen 18:1n9 at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The plasmalogen 18:1n9 moiety is derived from animal fats, liver and kidney, while the eicosadienoic acid moiety is derived from fish oils and liver. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(O-18:0/20:4(8Z,11Z,14Z,17Z))

(2-{[(2R)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]-3-(octadecyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C46H86NO7P (795.6141576)


PC(O-18:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(O-18:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of Stearyl alcohol at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. The Stearyl alcohol moiety is derived from beef fat, fish oil, while the eicosatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(o-18:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(o-18:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of Stearyl alcohol at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. The Stearyl alcohol moiety is derived from beef fat, fish oil, while the eicosatetraenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

Phosphatidylcholine alkyl 18:0-20:4

Phosphatidylcholine alkyl 18:0-20:4

C46H86NO7P (795.6141576)


   

PC(O-16:0/22:4)[U]

3,5,8-Trioxa-4-phosphatriaconta-15,18,21,24-tetraen-1-aminium, 7-[(hexadecyloxy)methyl]-4-hydroxy-N,N,N-trimethyl-9-oxo-, inner salt, 4-oxide, (all-Z)-

C46H86NO7P (795.6141576)


   

PC(O-18:0/20:4)

3,5,8-Trioxa-4-phosphaoctacosa-13,16,19,22-tetraen-1-aminium, 4-hydroxy-N,N,N-trimethyl-7-[(octadecyloxy)methyl]-9-oxo-, inner salt, 4-oxide, [R-(all-Z)]-

C46H86NO7P (795.6141576)


   

PC(O-18:0/20:4)[U]

3,5,8-Trioxa-4-phosphaoctacosa-13,16,19,22-tetraen-1-aminium, 4-hydroxy-N,N,N-trimethyl-7-[(octadecyloxy)methyl]-9-oxo-, inner salt, 4-oxide, (all-Z)-

C46H86NO7P (795.6141576)


   

Lecithin

1-(1-Enyl-stearoyl)-2-homo-gamma-linolenoyl-sn-glycero-3-phosphocholine

C46H86NO7P (795.6141576)


   

PC(O-16:0/22:4(7Z,10Z,13Z,16Z))

1-hexadecyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphocholine

C46H86NO7P (795.6141576)


   

PC(O-20:0/18:4(6Z,9Z,12Z,15Z))

1-eicosyl-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphocholine

C46H86NO7P (795.6141576)


   

PC(P-20:0/18:3(6Z,9Z,12Z))

1-(1Z-eicosenyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphocholine

C46H86NO7P (795.6141576)


   

PC(P-20:0/18:3(9Z,12Z,15Z))

1-(1Z-eicosenyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphocholine

C46H86NO7P (795.6141576)


   

PC O-38:4

1-(1Z,11Z-octadecadienyl)-2-(11Z,14Z-eicosadienoyl)-sn-glycero-3-phosphocholine

C46H86NO7P (795.6141576)


   

[3-decoxy-2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-decoxy-2-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecoxypropan-2-yl] (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (14Z,17Z,20Z)-octacosa-14,17,20-trienoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-henicosoxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoxy]propan-2-yl] (Z)-tridec-9-enoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecoxypropan-2-yl] (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (Z)-heptadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] (Z)-heptadec-9-enoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonadecoxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoxy]propan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propan-2-yl] tridecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propan-2-yl] tridecanoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] (Z)-pentadec-9-enoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tricosoxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-tricosoxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] heptadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propan-2-yl] heptadecanoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] pentacosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propan-2-yl] pentacosanoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentacosoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-pentacosoxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] pentadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propan-2-yl] pentadecanoate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C46H86NO7P (795.6141576)


   

[2-dodecanoyloxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-dodecanoyloxy-3-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[2-docosanoyloxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-docosanoyloxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z)-henicosa-11,14-dienoxy]-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(13Z,16Z)-docosa-13,16-dienoxy]-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[2-[(Z)-docos-13-enoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-docos-13-enoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[3-[(Z)-icos-11-enoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-icos-11-enoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[3-icosoxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-icosoxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoyl]oxy-3-[(Z)-tetradec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z)-icosa-11,14-dienoxy]-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]-2-tetradecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-nonadeca-9,12-dienoxy]-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]-2-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[3-[(Z)-docos-13-enoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(Z)-docos-13-enoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[3-dodecoxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-dodecoxy-2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[3-docosoxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-docosoxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[2-decanoyloxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-decanoyloxy-3-[(16Z,19Z,22Z,25Z)-octacosa-16,19,22,25-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   
   

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-octadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[2-icosanoyloxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-icosanoyloxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (Z)-henicos-11-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (Z)-henicos-11-enoate

C46H86NO7P (795.6141576)


   

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]-2-octadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-hexadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-hexadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] (Z)-nonadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] (Z)-nonadec-9-enoate

C46H86NO7P (795.6141576)


   

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-[(Z)-hexadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-hexadecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[2-[(Z)-icos-11-enoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(Z)-icos-11-enoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-tetradecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxy-3-tetradecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] nonadecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propan-2-yl] nonadecanoate

C46H86NO7P (795.6141576)


   

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-hexadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-hexadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] henicosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] henicosanoate

C46H86NO7P (795.6141576)


   

[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-[(Z)-octadec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] tricosanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] tricosanoate

C46H86NO7P (795.6141576)


   

[2-[(4Z,7Z,10Z,13Z)-icosa-4,7,10,13-tetraenoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4Z,7Z,10Z,13Z)-icosa-4,7,10,13-tetraenoyl]oxy-3-octadecoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[(2R)-3-[(E)-icos-1-enoxy]-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-icos-1-enoxy]-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-[(E)-octadec-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-octadec-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-[(E)-octadec-1-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

[(2R)-3-[(E)-icos-1-enoxy]-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2R)-3-[(E)-icos-1-enoxy]-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C46H86NO7P (795.6141576)


   

PC(P-18:0/20:3(8Z,11Z,14Z))

PC(P-18:0/20:3(8Z,11Z,14Z))

C46H86NO7P (795.6141576)


   

PC(P-18:0/20:3(5Z,8Z,11Z))

PC(P-18:0/20:3(5Z,8Z,11Z))

C46H86NO7P (795.6141576)


   

1-O-octadecyl-2-arachidonoyl-sn-glycero-3-phosphocholine

1-O-octadecyl-2-arachidonoyl-sn-glycero-3-phosphocholine

C46H86NO7P (795.6141576)


A phosphatidylcholine O-38:4 in which the alkyl and acyl groups specified at positions 1 and 2 are octadecyl and (5Z,8Z,11Z,14Z)-eicosatetraenoyl respectively.

   

PC(P-18:1(11Z)/20:2(11Z,14Z))

PC(P-18:1(11Z)/20:2(11Z,14Z))

C46H86NO7P (795.6141576)


   

PC(20:3(5Z,8Z,11Z)/P-18:0)

PC(20:3(5Z,8Z,11Z)/P-18:0)

C46H86NO7P (795.6141576)


   

PC(20:3(8Z,11Z,14Z)/P-18:0)

PC(20:3(8Z,11Z,14Z)/P-18:0)

C46H86NO7P (795.6141576)


   

PC(20:2(11Z,14Z)/P-18:1(9Z))

PC(20:2(11Z,14Z)/P-18:1(9Z))

C46H86NO7P (795.6141576)


   

PC(P-18:1(9Z)/20:2(11Z,14Z))

PC(P-18:1(9Z)/20:2(11Z,14Z))

C46H86NO7P (795.6141576)


   

PC(20:2(11Z,14Z)/P-18:1(11Z))

PC(20:2(11Z,14Z)/P-18:1(11Z))

C46H86NO7P (795.6141576)


   

1-octadecyl-2-[(5Z,8Z,11Z,14Z)-eicosatetraenoyl]-sn-glycero-3-phosphocholine

1-octadecyl-2-[(5Z,8Z,11Z,14Z)-eicosatetraenoyl]-sn-glycero-3-phosphocholine

C46H86NO7P (795.6141576)


A phosphatidylcholine O-38:4 in which the alkyl and acyl groups specified at positions 1 and 2 are octadecyl and (5Z,8Z,11Z,14Z)-eicosatetraenoyl respectively.

   

phosphatidylcholine O-38:4

phosphatidylcholine O-38:4

C46H86NO7P (795.6141576)


A glycerophosphocholine that is an alkyl,acyl-sn-glycero-3-phosphocholine in which the alkyl or acyl groups at positions 1 and 2 contain a total of 38 carbons and 4 double bonds.

   

MePC(37:4)

MePC(20:4(1)_17:0)

C46H86NO7P (795.6141576)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   

PC P-16:0/22:3 or PC O-16:1/22:3

PC P-16:0/22:3 or PC O-16:1/22:3

C46H86NO7P (795.6141576)


   
   

PC P-16:1/22:2 or PC O-16:2/22:2

PC P-16:1/22:2 or PC O-16:2/22:2

C46H86NO7P (795.6141576)


   
   

PC P-18:0/20:3 or PC O-18:1/20:3

PC P-18:0/20:3 or PC O-18:1/20:3

C46H86NO7P (795.6141576)


   
   

PC P-18:1/20:2 or PC O-18:2/20:2

PC P-18:1/20:2 or PC O-18:2/20:2

C46H86NO7P (795.6141576)


   
   

PC P-20:0/18:3 or PC O-20:1/18:3

PC P-20:0/18:3 or PC O-20:1/18:3

C46H86NO7P (795.6141576)


   
   

PC P-20:1/18:2 or PC O-20:2/18:2

PC P-20:1/18:2 or PC O-20:2/18:2

C46H86NO7P (795.6141576)


   
   

PC P-38:3 or PC O-38:4

PC P-38:3 or PC O-38:4

C46H86NO7P (795.6141576)