Chemical Formula: C45H81O8P

Chemical Formula C45H81O8P

Found 110 metabolite its formula value is C45H81O8P

PA(18:3(6Z,9Z,12Z)/24:1(15Z))

[(2R)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(18:3(6Z,9Z,12Z)/24:1(15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/24:1(15Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(9Z,12Z,15Z)/24:1(15Z))

[(2R)-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(18:3(9Z,12Z,15Z)/24:1(15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/24:1(15Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of nervonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:4(6Z,9Z,12Z,15Z)/24:0)

[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-(tetracosanoyloxy)propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(18:4(6Z,9Z,12Z,15Z)/24:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/24:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of lignoceric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/22:4(7Z,10Z,13Z,16Z))

[(2R)-2-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-3-(icosanoyloxy)propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(20:0/22:4(7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:3(5Z,8Z,11Z)/22:1(13Z))

[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(20:3(5Z,8Z,11Z)/22:1(13Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(5Z,8Z,11Z)/22:1(13Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(5Z,8Z,11Z,14Z)/22:0)

[(2R)-2-(docosanoyloxy)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(20:4(5Z,8Z,11Z,14Z)/22:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(5Z,8Z,11Z,14Z)/22:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of behenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:4(8Z,11Z,14Z,17Z)/22:0)

[(2R)-2-(docosanoyloxy)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(20:4(8Z,11Z,14Z,17Z)/22:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(8Z,11Z,14Z,17Z)/22:0), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of behenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:0/20:4(5Z,8Z,11Z,14Z))

[(2R)-3-(docosanoyloxy)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(22:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:0/20:4(8Z,11Z,14Z,17Z))

[(2R)-3-(docosanoyloxy)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(22:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:1(13Z)/20:3(5Z,8Z,11Z))

[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyloxy]propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(22:1(13Z)/20:3(5Z,8Z,11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:1(13Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of mead acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:4(7Z,10Z,13Z,16Z)/20:0)

[(2R)-3-[(7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoyloxy]-2-(icosanoyloxy)propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(22:4(7Z,10Z,13Z,16Z)/20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:4(7Z,10Z,13Z,16Z)/20:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(24:0/18:4(6Z,9Z,12Z,15Z))

[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-(tetracosanoyloxy)propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(24:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(24:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of lignoceric acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(24:1(15Z)/18:3(6Z,9Z,12Z))

[(2R)-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(24:1(15Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(24:1(15Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(24:1(15Z)/18:3(9Z,12Z,15Z))

[(2R)-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]-3-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(24:1(15Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(24:1(15Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of nervonic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:2(11Z,14Z)/22:2(13Z,16Z))

[(2R)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]-3-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(20:2(11Z,14Z)/22:2(13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:2(11Z,14Z)/22:2(13Z,16Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:3(8Z,11Z,14Z)/22:1(13Z))

[(2R)-2-[(13Z)-docos-13-enoyloxy]-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(20:3(8Z,11Z,14Z)/22:1(13Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(8Z,11Z,14Z)/22:1(13Z)), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:1(13Z)/20:3(8Z,11Z,14Z))

[(2R)-3-[(13Z)-docos-13-enoyloxy]-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyloxy]propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(22:1(13Z)/20:3(8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:1(13Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:2(13Z,16Z)/20:2(11Z,14Z))

[(2R)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]-2-[(11Z,14Z)-icosa-11,14-dienoyloxy]propoxy]phosphonic acid

C45H81O8P (780.5668756)


PA(22:2(13Z,16Z)/20:2(11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:2(13Z,16Z)/20:2(11Z,14Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/22:4(7Z,10Z,13Z,16Z))

1-eicosanoyl-2-(7Z,10Z,13Z,16Z-docosatetraenoyl)-glycero-3-phosphate

C45H81O8P (780.5668756)


   

PA(20:2(11Z,14Z)/22:2(13Z,16Z))

1-(11Z,14Z-eicosadienoyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphate

C45H81O8P (780.5668756)


   

PA(20:3(8Z,11Z,14Z)/22:1(11Z))

1-(8Z,11Z,14Z-eicosatrienoyl)-2-(11Z-docosenoyl)-glycero-3-phosphate

C45H81O8P (780.5668756)


   

PA(20:4(5Z,8Z,11Z,14Z)/22:0)

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-docosanoyl-glycero-3-phosphate

C45H81O8P (780.5668756)


   

PA(22:0/20:4(5Z,8Z,11Z,14Z))

1-docosanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphate

C45H81O8P (780.5668756)


   

PA(22:1(11Z)/20:3(8Z,11Z,14Z))

1-(11Z-docosenoyl)-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phosphate

C45H81O8P (780.5668756)


   

PA(22:2(13Z,16Z)/20:2(11Z,14Z))

1-(13Z,16Z-docosadienoyl)-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphate

C45H81O8P (780.5668756)


   

PA(22:4(7Z,10Z,13Z,16Z)/20:0)

1-(7Z,10Z,13Z,16Z-docosatetraenoyl)-2-eicosanoyl-glycero-3-phosphate

C45H81O8P (780.5668756)


   

PA 42:4

1-(13Z,16Z-docosadienoyl)-2-(11Z,14Z-eicosadienoyl)-glycero-3-phosphate

C45H81O8P (780.5668756)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (Z)-tetracos-13-enoate

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (Z)-tetracos-13-enoate

C45H81O8P (780.5668756)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C45H81O8P (780.5668756)


   

[1-[(Z)-icos-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[(Z)-icos-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C45H81O8P (780.5668756)


   

[1-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C45H81O8P (780.5668756)


   

(1-icosanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

(1-icosanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C45H81O8P (780.5668756)


   

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C45H81O8P (780.5668756)


   

(1-octadecanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

(1-octadecanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C45H81O8P (780.5668756)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-hexacos-15-enoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-hexacos-15-enoate

C45H81O8P (780.5668756)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] tetracosanoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] tetracosanoate

C45H81O8P (780.5668756)


   

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-phosphonooxypropyl] (Z)-docos-13-enoate

[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-phosphonooxypropyl] (Z)-docos-13-enoate

C45H81O8P (780.5668756)


   

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-phosphonooxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

[2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxy-3-phosphonooxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

C45H81O8P (780.5668756)


   

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-phosphonooxypropyl] docosanoate

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-phosphonooxypropyl] docosanoate

C45H81O8P (780.5668756)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] hexacosanoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] hexacosanoate

C45H81O8P (780.5668756)


   

[1-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C45H81O8P (780.5668756)


   

[(2R)-1-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2R)-1-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

C45H81O8P (780.5668756)


   

[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropyl] docosanoate

[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropyl] docosanoate

C45H81O8P (780.5668756)


   

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate

[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate

C45H81O8P (780.5668756)


   

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] tetracosanoate

[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] tetracosanoate

C45H81O8P (780.5668756)


   

[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C45H81O8P (780.5668756)


   

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropyl] docosanoate

[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropyl] docosanoate

C45H81O8P (780.5668756)


   

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] tetracosanoate

[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] tetracosanoate

C45H81O8P (780.5668756)


   

[(2R)-1-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

[(2R)-1-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

C45H81O8P (780.5668756)


   

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] tetracosanoate

[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] tetracosanoate

C45H81O8P (780.5668756)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] hexacosanoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] hexacosanoate

C45H81O8P (780.5668756)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-hexacos-11-enoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-hexacos-11-enoate

C45H81O8P (780.5668756)


   

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate

[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate

C45H81O8P (780.5668756)


   

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate

C45H81O8P (780.5668756)


   

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate

C45H81O8P (780.5668756)


   

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-tetracos-15-enoate

C45H81O8P (780.5668756)


   

[(2R)-2-icosanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-icosanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C45H81O8P (780.5668756)


   

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] tetracosanoate

[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] tetracosanoate

C45H81O8P (780.5668756)


   

[(2R)-1-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

[(2R)-1-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate

C45H81O8P (780.5668756)


   

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-tetracos-15-enoate

[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-tetracos-15-enoate

C45H81O8P (780.5668756)


   

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-tetracos-15-enoate

C45H81O8P (780.5668756)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-hexacosa-11,14-dienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-hexacosa-11,14-dienoate

C45H81O8P (780.5668756)


   

[(2R)-1-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

C45H81O8P (780.5668756)


   

[(2R)-1-icosanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-icosanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C45H81O8P (780.5668756)


   

[(2R)-1-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2R)-1-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

C45H81O8P (780.5668756)


   

[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate

C45H81O8P (780.5668756)


   

[(2R)-1-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

[(2R)-1-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate

C45H81O8P (780.5668756)


   

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-tetracos-15-enoate

[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-tetracos-15-enoate

C45H81O8P (780.5668756)


   

PEt(40:4)

PEt(20:1_20:3)

C45H81O8P (780.5668756)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PMe(41:4)

PMe(19:0_22:4)

C45H81O8P (780.5668756)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

BisMePA(40:4)

BisMePA(18:1_22:3)

C45H81O8P (780.5668756)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved