Chemical Formula: C43H77O8P
Chemical Formula C43H77O8P
Found 135 metabolite its formula value is C43H77O8P
PA(18:0/22:4(7Z,10Z,13Z,16Z))
PA(18:0/22:4(7Z,10Z,13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/22:4(7Z,10Z,13Z,16Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of adrenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:2(9Z,12Z)/22:2(13Z,16Z))
PA(18:2(9Z,12Z)/22:2(13Z,16Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:2(9Z,12Z)/22:2(13Z,16Z)), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of docosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:3(6Z,9Z,12Z)/22:1(13Z))
PA(18:3(6Z,9Z,12Z)/22:1(13Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/22:1(13Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:3(9Z,12Z,15Z)/22:1(13Z))
PA(18:3(9Z,12Z,15Z)/22:1(13Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/22:1(13Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of erucic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:4(6Z,9Z,12Z,15Z)/22:0)
PA(18:4(6Z,9Z,12Z,15Z)/22:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/22:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of behenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:0/20:4(5Z,8Z,11Z,14Z))
PA(20:0/20:4(5Z,8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:0/20:4(8Z,11Z,14Z,17Z))
PA(20:0/20:4(8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of eicosatetraenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:1(11Z)/20:3(5Z,8Z,11Z))
PA(20:1(11Z)/20:3(5Z,8Z,11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/20:3(5Z,8Z,11Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of mead acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:3(5Z,8Z,11Z)/20:1(11Z))
PA(20:3(5Z,8Z,11Z)/20:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(5Z,8Z,11Z)/20:1(11Z)), in particular, consists of one chain of mead acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:4(5Z,8Z,11Z,14Z)/20:0)
PA(20:4(5Z,8Z,11Z,14Z)/20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(5Z,8Z,11Z,14Z)/20:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:4(8Z,11Z,14Z,17Z)/20:0)
PA(20:4(8Z,11Z,14Z,17Z)/20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:4(8Z,11Z,14Z,17Z)/20:0), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:0/18:4(6Z,9Z,12Z,15Z))
PA(22:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of behenic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:1(13Z)/18:3(6Z,9Z,12Z))
PA(22:1(13Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:1(13Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:1(13Z)/18:3(9Z,12Z,15Z))
PA(22:1(13Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:1(13Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of erucic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:2(13Z,16Z)/18:2(9Z,12Z))
PA(22:2(13Z,16Z)/18:2(9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:2(13Z,16Z)/18:2(9Z,12Z)), in particular, consists of one chain of docosadienoic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(22:4(7Z,10Z,13Z,16Z)/18:0)
PA(22:4(7Z,10Z,13Z,16Z)/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:4(7Z,10Z,13Z,16Z)/18:0), in particular, consists of one chain of adrenic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:1(11Z)/20:3(8Z,11Z,14Z))
PA(20:1(11Z)/20:3(8Z,11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:1(11Z)/20:3(8Z,11Z,14Z)), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of dihomo-gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:2(11Z,14Z)/20:2(11Z,14Z))
PA(20:2(11Z,14Z)/20:2(11Z,14Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:2(11Z,14Z)/20:2(11Z,14Z)), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:3(8Z,11Z,14Z)/20:1(11Z))
PA(20:3(8Z,11Z,14Z)/20:1(11Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:3(8Z,11Z,14Z)/20:1(11Z)), in particular, consists of one chain of dihomo-gamma-linolenic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:2(9Z,12Z)/22:2(13Z,16Z))
PA(18:3(9Z,12Z,15Z)/22:1(11Z))
PA(22:1(11Z)/18:3(9Z,12Z,15Z))
PA(22:2(13Z,16Z)/18:2(9Z,12Z))
PA(22:4(7Z,10Z,13Z,16Z)/18:0)
PA(18:0/22:4(7Z,10Z,13Z,16Z))
[1-[(9Z,12Z)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate
[1-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate
(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropyl] (11Z,14Z)-icosa-11,14-dienoate
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-tetracos-13-enoate
[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] docosanoate
[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (Z)-docos-13-enoate
(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-phosphonooxypropyl] (Z)-icos-11-enoate
[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate
(1-octadecanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-[(Z)-octadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] tetracosanoate
[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-phosphonooxypropyl] icosanoate
[(2R)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate
[(2R)-1-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate
[(2R)-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropyl] icosanoate
[(2R)-1-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate
[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropyl] (E)-icos-13-enoate
[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropyl] (11E,14E)-icosa-11,14-dienoate
[(2R)-1-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate
[(2R)-1-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate
[(2R)-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate
[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate
[(2R)-1-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate
[(2R)-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropyl] docosanoate
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] tetracosanoate
[(2R)-1-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate
[(2R)-1-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate
[(2R)-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxy-3-phosphonooxypropyl] docosanoate
[(2R)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate
[(2R)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropyl] (E)-docos-13-enoate
[(2R)-2-octadecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate
[(2R)-2-[(E)-icos-13-enoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate
[(2R)-1-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] docosanoate
[(2R)-1-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-docos-13-enoate
[(2R)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate
[(2R)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate
[(2R)-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropyl] (E)-icos-11-enoate
[(2R)-1-[(E)-icos-13-enoyl]oxy-3-phosphonooxypropan-2-yl] (5E,8E,11E)-icosa-5,8,11-trienoate
[(2R)-2-[(9E,12E)-octadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (13E,16E)-docosa-13,16-dienoate
[(2R)-1-octadecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate
[(2R)-1-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate
[(2R)-2-[(5E,8E)-icosa-5,8-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate
[(2R)-1-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxy-3-phosphonooxypropan-2-yl] icosanoate
[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoate
[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (18E,21E)-tetracosa-18,21-dienoate
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-tetracos-11-enoate
[(2R)-1-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-phosphonooxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate
[(2R)-2-[(11E,14E)-icosa-11,14-dienoyl]oxy-3-phosphonooxypropyl] (5E,8E)-icosa-5,8-dienoate
[(2R)-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxy-3-phosphonooxypropyl] icosanoate
[(2R)-1-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-11-enoate
[(2R)-1-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxy-3-phosphonooxypropan-2-yl] (E)-icos-13-enoate
1-icosanoyl-2-arachidonoyl-sn-glycero-3-phosphate
A 1-acyl-2-arachidonoyl-sn-glycero-3-phosphate in which the 1-acyl group is specified as icosanoyl (arachidoyl).
PA(18:0/22:4)
A phosphatidic acid in which one acyl group has 18 carbons and is fully saturated while the other has 22 carbons and 4 double bonds.
BisMePA(38:4)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PEt(38:4)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved