Chemical Formula: C37H68O5

Chemical Formula C37H68O5

Found 96 metabolite its formula value is C37H68O5

cis-Uvariamicin IB

3-{13-hydroxy-13-[5-(1-hydroxypentadecyl)oxolan-2-yl]tridecyl}-5-methyl-2,5-dihydrofuran-2-one

C37H68O5 (592.5066478)


cis-Uvariamicin IB is found in fruits. cis-Uvariamicin IB is a constituent of Annona muricata (soursop). Constituent of Annona muricata (soursop). cis-Uvariamicin IB is found in fruits.

   

cis-Uvariamicin IV

3-{11-hydroxy-11-[5-(1-hydroxyheptadecyl)oxolan-2-yl]undecyl}-5-methyl-2,5-dihydrofuran-2-one

C37H68O5 (592.5066478)


cis-Uvariamicin IV is found in fruits. cis-Uvariamicin IV is a constituent of the roots of Annona muricata (soursop) Constituent of the roots of Annona muricata (soursop). cis-Uvariamicin IV is found in fruits.

   

Neoreticulatacin A

3-{15-hydroxy-15-[5-(1-hydroxytridecyl)oxolan-2-yl]pentadecyl}-5-methyl-2,5-dihydrofuran-2-one

C37H68O5 (592.5066478)


Constituent of Annona reticulata (custard apple) and Annona squamosa (sugar apple). Neoreticulatacin A is found in fruits. Reticulatacin is found in fruits. Reticulatacin is a constituent of Annona reticulata (custard apple)

   

DG(14:0/20:2(11Z,14Z)/0:0)

(2S)-1-hydroxy-3-(tetradecanoyloxy)propan-2-yl (11Z,14Z)-icosa-11,14-dienoate

C37H68O5 (592.5066478)


DG(14:0/20:2(11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:0/20:2(11Z,14Z)/0:0), in particular, consists of one chain of myristic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the eicosadienoic acid moiety is derived from fish oils and liver. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(14:0/20:2(11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:0/20:2(11Z,14Z)/0:0), in particular, consists of one chain of myristic acid at the C-1 position and one chain of eicosadienoic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the eicosadienoic acid moiety is derived from fish oils and liver. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(14:1(9Z)/20:1(11Z)/0:0)

(2S)-1-hydroxy-3-[(9Z)-tetradec-9-enoyloxy]propan-2-yl (11Z)-icos-11-enoate

C37H68O5 (592.5066478)


DG(14:1(9Z)/20:1(11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:1(9Z)/20:1(11Z)/0:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(14:1(9Z)/20:1(11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(14:1(9Z)/20:1(11Z)/0:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of eicosenoic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(16:0/18:2(9Z,12Z)/0:0)

(2S)-1-(hexadecanoyloxy)-3-hydroxypropan-2-yl (9Z,12Z)-octadeca-9,12-dienoate

C37H68O5 (592.5066478)


DG(16:0/18:2(9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(16:0/18:2(9Z,12Z)/0:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the linoleic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(16:0/18:2(9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(16:0/18:2(9Z,12Z)/0:0), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of linoleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the linoleic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(16:1(9Z)/18:1(11Z)/0:0)

(2S)-1-[(9Z)-hexadec-9-enoyloxy]-3-hydroxypropan-2-yl (11Z)-octadec-11-enoate

C37H68O5 (592.5066478)


DG(16:1(9Z)/18:1(11Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(16:1(9Z)/18:1(11Z)/0:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the vaccenic acid moiety is derived from butter fat and animal fat. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(16:1(9Z)/18:1(9Z)/0:0)

(2S)-1-[(9Z)-hexadec-9-enoyloxy]-3-hydroxypropan-2-yl (9Z)-octadec-9-enoate

C37H68O5 (592.5066478)


DG(16:1(9Z)/18:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(16:1(9Z)/18:1(9Z)/0:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of oleic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(16:1(9Z)/18:1(9Z)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(16:1(9Z)/18:1(9Z)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(18:1(11Z)/16:1(9Z)/0:0)

(2S)-2-[(9Z)-hexadec-9-enoyloxy]-3-hydroxypropyl (11Z)-octadec-11-enoate

C37H68O5 (592.5066478)


DG(18:1(11Z)/16:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:1(11Z)/16:1(9Z)/0:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:1(11Z)/16:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:1(11Z)/16:1(9Z)/0:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The vaccenic acid moiety is derived from butter fat and animal fat, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:1(9Z)/16:1(9Z)/0:0)

(2S)-2-[(9Z)-hexadec-9-enoyloxy]-3-hydroxypropyl (9Z)-octadec-9-enoate

C37H68O5 (592.5066478)


DG(18:1(9Z)/16:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:1(9Z)/16:1(9Z)/0:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(18:2(9Z,12Z)/16:0/0:0)

(2S)-2-(hexadecanoyloxy)-3-hydroxypropyl (9Z,12Z)-octadeca-9,12-dienoate

C37H68O5 (592.5066478)


DG(18:2(9Z,12Z)/16:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:2(9Z,12Z)/16:0/0:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:1(11Z)/14:1(9Z)/0:0)

(2S)-3-hydroxy-2-[(9Z)-tetradec-9-enoyloxy]propyl (11Z)-icos-11-enoate

C37H68O5 (592.5066478)


DG(20:1(11Z)/14:1(9Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:1(11Z)/14:1(9Z)/0:0), in particular, consists of one chain of eicosenoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The eicosenoic acid moiety is derived from vegetable oils and cod oils, while the myristoleic acid moiety is derived from milk fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:2(11Z,14Z)/14:0/0:0)

(2S)-3-hydroxy-2-(tetradecanoyloxy)propyl (11Z,14Z)-icosa-11,14-dienoate

C37H68O5 (592.5066478)


DG(20:2(11Z,14Z)/14:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:2(11Z,14Z)/14:0/0:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of myristic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the myristic acid moiety is derived from nutmeg and butter. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(20:2(11Z,14Z)/14:0/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:2(11Z,14Z)/14:0/0:0), in particular, consists of one chain of eicosadienoic acid at the C-1 position and one chain of myristic acid at the C-2 position. The eicosadienoic acid moiety is derived from fish oils and liver, while the myristic acid moiety is derived from nutmeg and butter. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

Reticulatain 2

Reticulatain 2

C37H68O5 (592.5066478)


Constituent of Annona reticulata (custard apple). Reticulatain 2 is found in fruits. Uvariamicin III is found in fruits. Uvariamicin III is isolated from Annona species.

   

DG(14:0/0:0/20:2n6)

(2R)-2-Hydroxy-3-(tetradecanoyloxy)propyl (11Z,14Z)-icosa-11,14-dienoic acid

C37H68O5 (592.5066478)


DG(14:0/0:0/20:2n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(14:0/0:0/20:2n6), in particular, consists of one chain of myristic acid at the C-1 position and one chain of eicosadienoic acid at the C-3 position. The myristic acid moiety is derived from nutmeg and butter, while the eicosadienoic acid moiety is derived from fish oils and liver. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(15:0/0:0/18:2n6)

(2R)-2-Hydroxy-3-(pentadecanoyloxy)propyl (9Z,12Z)-nonadeca-9,12-dienoic acid

C37H68O5 (592.5066478)


DG(15:0/0:0/18:2n6) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(15:0/0:0/18:2n6), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of linoleic acid at the C-3 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the linoleic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(14:1n5/0:0/20:1n9)

(2S)-2-Hydroxy-3-[(5Z)-tetradec-5-enoyloxy]propyl (11Z)-icos-11-enoic acid

C37H68O5 (592.5066478)


DG(14:1n5/0:0/20:1n9) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(14:1n5/0:0/20:1n9), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of eicosenoic acid at the C-3 position. The myristoleic acid moiety is derived from milk fats, while the eicosenoic acid moiety is derived from vegetable oils and cod oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(16:1n7/0:0/18:1n7)

(2S)-3-[(7Z)-Hexadec-7-enoyloxy]-2-hydroxypropyl (11Z)-octadec-11-enoic acid

C37H68O5 (592.5066478)


DG(16:1n7/0:0/18:1n7) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(16:1n7/0:0/18:1n7), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of vaccenic acid at the C-3 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the vaccenic acid moiety is derived from butter fat and animal fat. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(16:1n7/0:0/18:1n9)

(2S)-3-[(7Z)-Hexadec-7-enoyloxy]-2-hydroxypropyl (9Z)-octadec-9-enoic acid

C37H68O5 (592.5066478)


DG(16:1n7/0:0/18:1n9) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(16:1n7/0:0/18:1n9), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of oleic acid at the C-3 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

1-O-Palmitoyl-2-O-linoleoyl-D-glycerol

1-(hexadecanoyloxy)-3-hydroxypropan-2-yl octadeca-9,12-dienoate

C37H68O5 (592.5066478)


   

Reticulatain 2

3-(16-{[5-(1-hydroxyundecyl)oxolan-2-yl]methoxy}hexadecyl)-5-methyl-2,5-dihydrofuran-2-one

C37H68O5 (592.5066478)


   

DG(16:0/18:2/0:0)[iso2]

1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycerol

C37H68O5 (592.5066478)


   

DG(17:1/17:1/0:0)

1,2-di-(9Z-heptadecenoyl)-sn-glycerol

C37H68O5 (592.5066478)


   

DG(17:0/17:2/0:0)[iso2]

1-heptadecanoyl-2-(9Z,12Z-heptadecadienoyl)-sn-glycerol

C37H68O5 (592.5066478)


   

DG(16:1/18:1/0:0)[iso2]

1-(9Z-hexadecenoyl)-2-(9Z-octadecenoyl)-sn-glycerol

C37H68O5 (592.5066478)


   

Diglyceride

1-Eicosadienoyl-2-myristoyl-sn-glycerol

C37H68O5 (592.5066478)


   

cis-Uvariamicin I

3-{13-hydroxy-13-[5-(1-hydroxypentadecyl)oxolan-2-yl]tridecyl}-5-methyl-2,5-dihydrofuran-2-one

C37H68O5 (592.5066478)


   

cis-Uvariamicin IV

3-{11-hydroxy-11-[5-(1-hydroxyheptadecyl)oxolan-2-yl]undecyl}-5-methyl-2,5-dihydrofuran-2-one

C37H68O5 (592.5066478)


   

Neoreticulatacin A

3-{15-hydroxy-15-[5-(1-hydroxytridecyl)oxolan-2-yl]pentadecyl}-5-methyl-2,5-dihydrofuran-2-one

C37H68O5 (592.5066478)


   

DG(12:0/22:2(13Z,16Z)/0:0)[iso2]

1-dodecanoyl-2-(13Z,16Z-docosadienoyl)-sn-glycerol

C37H68O5 (592.5066478)


   

DG 34:2

1-heptadecanoyl-2-(9Z,12Z-heptadecadienoyl)-sn-glycerol

C37H68O5 (592.5066478)


   
   

1-LINOLEOYL-3-PALMITOYL-RAC-GLYCEROL

1-LINOLEOYL-3-PALMITOYL-RAC-GLYCEROL

C37H68O5 (592.5066478)


   

1-Palmitoyl-2-linoleoyl-rac-glycerol

1-Palmitoyl-2-linoleoyl-rac-glycerol

C37H68O5 (592.5066478)


   

(1-hexadecanoyloxy-3-hydroxypropan-2-yl) (9E,12E)-octadeca-9,12-dienoate

(1-hexadecanoyloxy-3-hydroxypropan-2-yl) (9E,12E)-octadeca-9,12-dienoate

C37H68O5 (592.5066478)


   

1-Palmitoleoyl-2-oleoyl-glycerol

1-Palmitoleoyl-2-oleoyl-glycerol

C37H68O5 (592.5066478)


   

[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-octanoyloxypropyl] octanoate

[3-[(9Z,12Z)-octadeca-9,12-dienoxy]-2-octanoyloxypropyl] octanoate

C37H68O5 (592.5066478)


   

(2-octanoyloxy-3-octoxypropyl) (9Z,12Z)-octadeca-9,12-dienoate

(2-octanoyloxy-3-octoxypropyl) (9Z,12Z)-octadeca-9,12-dienoate

C37H68O5 (592.5066478)


   

(2-decanoyloxy-3-octoxypropyl) (9Z,12Z)-hexadeca-9,12-dienoate

(2-decanoyloxy-3-octoxypropyl) (9Z,12Z)-hexadeca-9,12-dienoate

C37H68O5 (592.5066478)


   

[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-octanoyloxypropyl] decanoate

[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-octanoyloxypropyl] decanoate

C37H68O5 (592.5066478)


   

(3-decoxy-2-octanoyloxypropyl) (9Z,12Z)-hexadeca-9,12-dienoate

(3-decoxy-2-octanoyloxypropyl) (9Z,12Z)-hexadeca-9,12-dienoate

C37H68O5 (592.5066478)


   

[2-[(Z)-heptadec-9-enoyl]oxy-3-hydroxypropyl] (Z)-heptadec-9-enoate

[2-[(Z)-heptadec-9-enoyl]oxy-3-hydroxypropyl] (Z)-heptadec-9-enoate

C37H68O5 (592.5066478)


   

(1-decanoyloxy-3-hydroxypropan-2-yl) (13Z,16Z)-tetracosa-13,16-dienoate

(1-decanoyloxy-3-hydroxypropan-2-yl) (13Z,16Z)-tetracosa-13,16-dienoate

C37H68O5 (592.5066478)


   

[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-icos-11-enoate

C37H68O5 (592.5066478)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropyl] octadecanoate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropyl] octadecanoate

C37H68O5 (592.5066478)


   

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropyl] heptadecanoate

[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropyl] heptadecanoate

C37H68O5 (592.5066478)


   

[1-hydroxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-hydroxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C37H68O5 (592.5066478)


   

(1-dodecanoyloxy-3-hydroxypropan-2-yl) (13Z,16Z)-docosa-13,16-dienoate

(1-dodecanoyloxy-3-hydroxypropan-2-yl) (13Z,16Z)-docosa-13,16-dienoate

C37H68O5 (592.5066478)


   

(1-hydroxy-3-tridecanoyloxypropan-2-yl) (11Z,14Z)-henicosa-11,14-dienoate

(1-hydroxy-3-tridecanoyloxypropan-2-yl) (11Z,14Z)-henicosa-11,14-dienoate

C37H68O5 (592.5066478)


   

(1-hydroxy-3-tetradecanoyloxypropan-2-yl) (11Z,14Z)-icosa-11,14-dienoate

(1-hydroxy-3-tetradecanoyloxypropan-2-yl) (11Z,14Z)-icosa-11,14-dienoate

C37H68O5 (592.5066478)


   

[1-hydroxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-henicos-11-enoate

[1-hydroxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-henicos-11-enoate

C37H68O5 (592.5066478)


   

(1-hydroxy-3-pentadecanoyloxypropan-2-yl) (9Z,12Z)-nonadeca-9,12-dienoate

(1-hydroxy-3-pentadecanoyloxypropan-2-yl) (9Z,12Z)-nonadeca-9,12-dienoate

C37H68O5 (592.5066478)


   

(1-hydroxy-3-octanoyloxypropan-2-yl) (15Z,18Z)-hexacosa-15,18-dienoate

(1-hydroxy-3-octanoyloxypropan-2-yl) (15Z,18Z)-hexacosa-15,18-dienoate

C37H68O5 (592.5066478)


   

[(2S)-1-hexadecanoyloxy-3-hydroxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2S)-1-hexadecanoyloxy-3-hydroxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C37H68O5 (592.5066478)


   

[(2S)-2-hexadecanoyloxy-3-hydroxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2S)-2-hexadecanoyloxy-3-hydroxypropyl] (9E,12E)-octadeca-9,12-dienoate

C37H68O5 (592.5066478)


   

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-hydroxypropyl] (E)-heptadec-9-enoate

[(2S)-2-[(E)-heptadec-9-enoyl]oxy-3-hydroxypropyl] (E)-heptadec-9-enoate

C37H68O5 (592.5066478)


   

[(2S)-1-hydroxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-icos-11-enoate

[(2S)-1-hydroxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (E)-icos-11-enoate

C37H68O5 (592.5066478)


   

[(2S)-3-hydroxy-2-tetradecanoyloxypropyl] (11E,14E)-icosa-11,14-dienoate

[(2S)-3-hydroxy-2-tetradecanoyloxypropyl] (11E,14E)-icosa-11,14-dienoate

C37H68O5 (592.5066478)


   

[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] octadecanoate

[1-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-hydroxypropan-2-yl] octadecanoate

C37H68O5 (592.5066478)


   

[(2S)-2-dodecanoyloxy-3-hydroxypropyl] (13E,16E)-docosa-13,16-dienoate

[(2S)-2-dodecanoyloxy-3-hydroxypropyl] (13E,16E)-docosa-13,16-dienoate

C37H68O5 (592.5066478)


   

[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropyl] heptadecanoate

[(2S)-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropyl] heptadecanoate

C37H68O5 (592.5066478)


   

[(2S)-3-hydroxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-icos-11-enoate

[(2S)-3-hydroxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-icos-11-enoate

C37H68O5 (592.5066478)


   

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] heptadecanoate

[(2S)-1-[(9E,12E)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropan-2-yl] heptadecanoate

C37H68O5 (592.5066478)


   

[(2S)-1-dodecanoyloxy-3-hydroxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

[(2S)-1-dodecanoyloxy-3-hydroxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate

C37H68O5 (592.5066478)


   

[(2S)-1-hydroxy-3-tetradecanoyloxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

[(2S)-1-hydroxy-3-tetradecanoyloxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate

C37H68O5 (592.5066478)


   

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropyl] (E)-octadec-11-enoate

[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropyl] (E)-octadec-11-enoate

C37H68O5 (592.5066478)


   

[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (E)-octadec-11-enoate

[(2S)-1-[(E)-hexadec-9-enoyl]oxy-3-hydroxypropan-2-yl] (E)-octadec-11-enoate

C37H68O5 (592.5066478)


   

1-Palmitoyl-2-linoleoyl-sn-glycerol

1-Palmitoyl-2-linoleoyl-sn-glycerol

C37H68O5 (592.5066478)


A 1,2-diacyl-sn-glycerol in which the 1- and 2-acyl groups are specified as palmitoyl and linoleoyl respectively.

   

1-(9Z-hexadecenoyl)-2-(9Z-octadecenoyl)-sn-glycerol

1-(9Z-hexadecenoyl)-2-(9Z-octadecenoyl)-sn-glycerol

C37H68O5 (592.5066478)


   

1-tetradecanoyl-2-(11Z,14Z-eicosadienoyl)-sn-glycerol

1-tetradecanoyl-2-(11Z,14Z-eicosadienoyl)-sn-glycerol

C37H68O5 (592.5066478)


   

1-(9Z-tetradecenoyl)-2-(11Z-eicosenoyl)-sn-glycerol

1-(9Z-tetradecenoyl)-2-(11Z-eicosenoyl)-sn-glycerol

C37H68O5 (592.5066478)


   

DG(18:2(9Z,12Z)/16:0/0:0)

DG(18:2(9Z,12Z)/16:0/0:0)

C37H68O5 (592.5066478)


   

1-Oleoyl-2-palmitoleoyl-sn-glycerol

1-Oleoyl-2-palmitoleoyl-sn-glycerol

C37H68O5 (592.5066478)


   

DG(16:1(9Z)/18:1(11Z)/0:0)

DG(16:1(9Z)/18:1(11Z)/0:0)

C37H68O5 (592.5066478)


   

1-Vaccenoyl-2-palmitoleoyl-sn-glycerol

1-Vaccenoyl-2-palmitoleoyl-sn-glycerol

C37H68O5 (592.5066478)


   

DG(20:1(11Z)/14:1(9Z)/0:0)

DG(20:1(11Z)/14:1(9Z)/0:0)

C37H68O5 (592.5066478)


   

DG(20:2(11Z,14Z)/14:0/0:0)

DG(20:2(11Z,14Z)/14:0/0:0)

C37H68O5 (592.5066478)


   

cis-Uvariamicin IB

cis-Uvariamicin IB

C37H68O5 (592.5066478)


   

1-palmitoyl-3-linoleoylglycerol

1-palmitoyl-3-linoleoylglycerol

C37H68O5 (592.5066478)


A 1,3-diglyceride in which the acyl groups at positions 1 and 3 are specified as palmitoyl (hexadecanoyl) and linoleoyl respectively.

   

diacylglycerol 34:2

diacylglycerol 34:2

C37H68O5 (592.5066478)


A diglyceride in which the two acyl groups contain a total of 34 carbons and 2 double bonds.

   

DG(18:1(9Z)/16:1(9Z)/0:0)

DG(18:1(9Z)/16:1(9Z)/0:0)

C37H68O5 (592.5066478)


   

DG(16:1(9Z)/18:1(9Z)/0:0)

DG(16:1(9Z)/18:1(9Z)/0:0)

C37H68O5 (592.5066478)


   

DG(18:1(11Z)/16:1(9Z)/0:0)

DG(18:1(11Z)/16:1(9Z)/0:0)

C37H68O5 (592.5066478)


   

DG(14:1(9Z)/20:1(11Z)/0:0)

DG(14:1(9Z)/20:1(11Z)/0:0)

C37H68O5 (592.5066478)


   
   
   
   
   
   
   
   
   
   
   

DG 17:1(9Z)/17:1(9Z)/0:0

DG 17:1(9Z)/17:1(9Z)/0:0

C37H68O5 (592.5066478)


   

(5r)-3-[(13r)-13-hydroxy-13-[(2s,5r)-5-[(1s)-1-hydroxypentadecyl]oxolan-2-yl]tridecyl]-5-methyl-5h-furan-2-one

(5r)-3-[(13r)-13-hydroxy-13-[(2s,5r)-5-[(1s)-1-hydroxypentadecyl]oxolan-2-yl]tridecyl]-5-methyl-5h-furan-2-one

C37H68O5 (592.5066478)