Chemical Formula: C35H54N7O19P3S

Chemical Formula C35H54N7O19P3S

Found 19 metabolite its formula value is C35H54N7O19P3S

3-Oxo-OPC4-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-({3-oxo-4-[(1R,2S)-3-oxo-2-[(2Z)-pent-2-en-1-yl]cyclopentyl]butanoyl}sulfanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C35H54N7O19P3S (1001.2407924)


This compound belongs to the family of 3-Oxo-acyl CoAs. These are organic compounds containing a 3-oxo acylated coenzyme A derivative.

   

Tetradeca-3,6,9-trienedioyl-CoA

14-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-14-oxotetradeca-3,6,9-trienoic acid

C35H54N7O19P3S (1001.2407924)


Tetradeca-3,6,9-trienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-3_6_9-trienedioic acid thioester of coenzyme A. Tetradeca-3,6,9-trienedioyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-3,6,9-trienedioyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-3,6,9-trienedioyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-3,6,9-trienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-3,6,9-trienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-3,6,9-trienedioyl-CoA into Tetradeca-3_6_9-trienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-3_6_9-trienedioylcarnitine is converted back to Tetradeca-3,6,9-trienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-3,6,9-trienedioyl-CoA occurs in four steps. First, since Tetradeca-3,6,9-trienedioyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-3,6,9-trienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of ...

   

Tetradeca-2,4,6-trienedioyl-CoA

14-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-14-oxotetradeca-2,4,6-trienoic acid

C35H54N7O19P3S (1001.2407924)


Tetradeca-2,4,6-trienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-2_4_6-trienedioic acid thioester of coenzyme A. Tetradeca-2,4,6-trienedioyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-2,4,6-trienedioyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-2,4,6-trienedioyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-2,4,6-trienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-2,4,6-trienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-2,4,6-trienedioyl-CoA into Tetradeca-2_4_6-trienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-2_4_6-trienedioylcarnitine is converted back to Tetradeca-2,4,6-trienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-2,4,6-trienedioyl-CoA occurs in four steps. First, since Tetradeca-2,4,6-trienedioyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-2,4,6-trienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of ...

   

Tetradeca-5,7,9-trienedioyl-CoA

14-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-14-oxotetradeca-5,7,9-trienoic acid

C35H54N7O19P3S (1001.2407924)


Tetradeca-5,7,9-trienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-5_7_9-trienedioic acid thioester of coenzyme A. Tetradeca-5,7,9-trienedioyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-5,7,9-trienedioyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-5,7,9-trienedioyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-5,7,9-trienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-5,7,9-trienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-5,7,9-trienedioyl-CoA into Tetradeca-5_7_9-trienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-5_7_9-trienedioylcarnitine is converted back to Tetradeca-5,7,9-trienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-5,7,9-trienedioyl-CoA occurs in four steps. First, since Tetradeca-5,7,9-trienedioyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-5,7,9-trienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of ...

   

(2E,4Z,10Z)-Tetradeca-2,4,10-trienedioyl-CoA

14-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-14-oxotetradeca-2,4,10-trienoic acid

C35H54N7O19P3S (1001.2407924)


(2e,4z,10z)-tetradeca-2,4,10-trienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (2E_4Z_10Z)-tetradeca-2_4_10-trienedioic acid thioester of coenzyme A. (2e,4z,10z)-tetradeca-2,4,10-trienedioyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (2e,4z,10z)-tetradeca-2,4,10-trienedioyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (2e,4z,10z)-tetradeca-2,4,10-trienedioyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (2E,4Z,10Z)-Tetradeca-2,4,10-trienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (2E,4Z,10Z)-Tetradeca-2,4,10-trienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (2E,4Z,10Z)-Tetradeca-2,4,10-trienedioyl-CoA into (2E_4Z_10Z)-Tetradeca-2_4_10-trienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (2E_4Z_10Z)-Tetradeca-2_4_10-trienedioylcarnitine is converted back to (2E,4Z,10Z)-Tetradeca-2,4,10-trienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (2E,4Z,10Z)-Tetradeca-2,4,10-trienedioyl-CoA occurs in four steps. First, since (2E,4Z,10Z)-Tetradeca-2,4,10-trienedioyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (2E,4Z,10Z)-Tetradeca...

   

Tetradeca-3,5,7-trienedioyl-CoA

14-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-14-oxotetradeca-3,5,7-trienoic acid

C35H54N7O19P3S (1001.2407924)


Tetradeca-3,5,7-trienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-3_5_7-trienedioic acid thioester of coenzyme A. Tetradeca-3,5,7-trienedioyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-3,5,7-trienedioyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-3,5,7-trienedioyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-3,5,7-trienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-3,5,7-trienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-3,5,7-trienedioyl-CoA into Tetradeca-3_5_7-trienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-3_5_7-trienedioylcarnitine is converted back to Tetradeca-3,5,7-trienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-3,5,7-trienedioyl-CoA occurs in four steps. First, since Tetradeca-3,5,7-trienedioyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-3,5,7-trienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of ...

   

Tetradeca-4,6,8-trienedioyl-CoA

14-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-14-oxotetradeca-4,6,8-trienoic acid

C35H54N7O19P3S (1001.2407924)


Tetradeca-4,6,8-trienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-4_6_8-trienedioic acid thioester of coenzyme A. Tetradeca-4,6,8-trienedioyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-4,6,8-trienedioyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-4,6,8-trienedioyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-4,6,8-trienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-4,6,8-trienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-4,6,8-trienedioyl-CoA into Tetradeca-4_6_8-trienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-4_6_8-trienedioylcarnitine is converted back to Tetradeca-4,6,8-trienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-4,6,8-trienedioyl-CoA occurs in four steps. First, since Tetradeca-4,6,8-trienedioyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-4,6,8-trienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of ...

   

Tetradeca-4,7,10-trienedioyl-CoA

14-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-14-oxotetradeca-4,7,10-trienoic acid

C35H54N7O19P3S (1001.2407924)


Tetradeca-4,7,10-trienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-4_7_10-trienedioic acid thioester of coenzyme A. Tetradeca-4,7,10-trienedioyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-4,7,10-trienedioyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-4,7,10-trienedioyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-4,7,10-trienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-4,7,10-trienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-4,7,10-trienedioyl-CoA into Tetradeca-4_7_10-trienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-4_7_10-trienedioylcarnitine is converted back to Tetradeca-4,7,10-trienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-4,7,10-trienedioyl-CoA occurs in four steps. First, since Tetradeca-4,7,10-trienedioyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-4,7,10-trienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes th...

   

Tetradeca-2,5,8-trienedioyl-CoA

14-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-14-oxotetradeca-2,5,8-trienoic acid

C35H54N7O19P3S (1001.2407924)


Tetradeca-2,5,8-trienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a tetradeca-2_5_8-trienedioic acid thioester of coenzyme A. Tetradeca-2,5,8-trienedioyl-coa is an acyl-CoA with 14 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Tetradeca-2,5,8-trienedioyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Tetradeca-2,5,8-trienedioyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Tetradeca-2,5,8-trienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Tetradeca-2,5,8-trienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Tetradeca-2,5,8-trienedioyl-CoA into Tetradeca-2_5_8-trienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Tetradeca-2_5_8-trienedioylcarnitine is converted back to Tetradeca-2,5,8-trienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Tetradeca-2,5,8-trienedioyl-CoA occurs in four steps. First, since Tetradeca-2,5,8-trienedioyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Tetradeca-2,5,8-trienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of ...

   

Tetradeca-3,6,9-trienedioyl-CoA

Tetradeca-3,6,9-trienedioyl-CoA

C35H54N7O19P3S (1001.2407924)


   

Tetradeca-2,4,6-trienedioyl-CoA

Tetradeca-2,4,6-trienedioyl-CoA

C35H54N7O19P3S (1001.2407924)


   

Tetradeca-5,7,9-trienedioyl-CoA

Tetradeca-5,7,9-trienedioyl-CoA

C35H54N7O19P3S (1001.2407924)


   

Tetradeca-3,5,7-trienedioyl-CoA

Tetradeca-3,5,7-trienedioyl-CoA

C35H54N7O19P3S (1001.2407924)


   

Tetradeca-4,6,8-trienedioyl-CoA

Tetradeca-4,6,8-trienedioyl-CoA

C35H54N7O19P3S (1001.2407924)


   

Tetradeca-2,5,8-trienedioyl-CoA

Tetradeca-2,5,8-trienedioyl-CoA

C35H54N7O19P3S (1001.2407924)


   

Tetradeca-4,7,10-trienedioyl-CoA

Tetradeca-4,7,10-trienedioyl-CoA

C35H54N7O19P3S (1001.2407924)


   

(2E,4Z,10Z)-Tetradeca-2,4,10-trienedioyl-CoA

(2E,4Z,10Z)-Tetradeca-2,4,10-trienedioyl-CoA

C35H54N7O19P3S (1001.2407924)


   
   

PubChem CID: 44237347; (Acyl-CoA); [M+H]+

PubChem CID: 44237347; (Acyl-CoA); [M+H]+

C35H54N7O19P3S (1001.2407924)