Chemical Formula: C31H50N7O20P3S

Chemical Formula C31H50N7O20P3S

Found 16 metabolite its formula value is C31H50N7O20P3S

6-Hydroxydec-4-enedioyl-CoA

10-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-6-hydroxy-10-oxodec-4-enoic acid

C31H50N7O20P3S (965.2044)


6-hydroxydec-4-enedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 6-hydroxydec-4-enedioic acid thioester of coenzyme A. 6-hydroxydec-4-enedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 6-hydroxydec-4-enedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 6-hydroxydec-4-enedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 6-Hydroxydec-4-enedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 6-Hydroxydec-4-enedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 6-Hydroxydec-4-enedioyl-CoA into 6-Hydroxydec-4-enedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 6-Hydroxydec-4-enedioylcarnitine is converted back to 6-Hydroxydec-4-enedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 6-Hydroxydec-4-enedioyl-CoA occurs in four steps. First, since 6-Hydroxydec-4-enedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 6-Hydroxydec-4-enedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to m...

   

6-Hydroxydec-3-enedioyl-CoA

10-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-6-hydroxy-10-oxodec-3-enoic acid

C31H50N7O20P3S (965.2044)


6-hydroxydec-3-enedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 6-hydroxydec-3-enedioic acid thioester of coenzyme A. 6-hydroxydec-3-enedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 6-hydroxydec-3-enedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 6-hydroxydec-3-enedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 6-Hydroxydec-3-enedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 6-Hydroxydec-3-enedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 6-Hydroxydec-3-enedioyl-CoA into 6-Hydroxydec-3-enedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 6-Hydroxydec-3-enedioylcarnitine is converted back to 6-Hydroxydec-3-enedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 6-Hydroxydec-3-enedioyl-CoA occurs in four steps. First, since 6-Hydroxydec-3-enedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 6-Hydroxydec-3-enedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to m...

   

6-Hydroxydec-2-enedioyl-CoA

10-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-6-hydroxy-10-oxodec-2-enoic acid

C31H50N7O20P3S (965.2044)


6-hydroxydec-2-enedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 6-hydroxydec-2-enedioic acid thioester of coenzyme A. 6-hydroxydec-2-enedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 6-hydroxydec-2-enedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 6-hydroxydec-2-enedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 6-Hydroxydec-2-enedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 6-Hydroxydec-2-enedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 6-Hydroxydec-2-enedioyl-CoA into 6-Hydroxydec-2-enedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 6-Hydroxydec-2-enedioylcarnitine is converted back to 6-Hydroxydec-2-enedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 6-Hydroxydec-2-enedioyl-CoA occurs in four steps. First, since 6-Hydroxydec-2-enedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 6-Hydroxydec-2-enedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to m...

   

5-Hydroxydec-4-enedioyl-CoA

10-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-5-hydroxy-10-oxodec-4-enoic acid

C31H50N7O20P3S (965.2044)


5-hydroxydec-4-enedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 5-hydroxydec-4-enedioic acid thioester of coenzyme A. 5-hydroxydec-4-enedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 5-hydroxydec-4-enedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 5-hydroxydec-4-enedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 5-Hydroxydec-4-enedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 5-Hydroxydec-4-enedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 5-Hydroxydec-4-enedioyl-CoA into 5-Hydroxydec-4-enedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 5-Hydroxydec-4-enedioylcarnitine is converted back to 5-Hydroxydec-4-enedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 5-Hydroxydec-4-enedioyl-CoA occurs in four steps. First, since 5-Hydroxydec-4-enedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 5-Hydroxydec-4-enedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to m...

   

5-Hydroxydec-5-enedioyl-CoA

10-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-6-hydroxy-10-oxodec-5-enoic acid

C31H50N7O20P3S (965.2044)


5-hydroxydec-5-enedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 5-hydroxydec-5-enedioic acid thioester of coenzyme A. 5-hydroxydec-5-enedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 5-hydroxydec-5-enedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 5-hydroxydec-5-enedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 5-Hydroxydec-5-enedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 5-Hydroxydec-5-enedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 5-Hydroxydec-5-enedioyl-CoA into 5-Hydroxydec-5-enedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 5-Hydroxydec-5-enedioylcarnitine is converted back to 5-Hydroxydec-5-enedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 5-Hydroxydec-5-enedioyl-CoA occurs in four steps. First, since 5-Hydroxydec-5-enedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 5-Hydroxydec-5-enedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to m...

   

(2Z)-5-Hydroxydec-2-enedioyl-CoA

10-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-6-hydroxy-10-oxodec-8-enoic acid

C31H50N7O20P3S (965.2044)


(2z)-5-hydroxydec-2-enedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (2Z)-5-hydroxydec-2-enedioic acid thioester of coenzyme A. (2z)-5-hydroxydec-2-enedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (2z)-5-hydroxydec-2-enedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (2z)-5-hydroxydec-2-enedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (2Z)-5-Hydroxydec-2-enedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (2Z)-5-Hydroxydec-2-enedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (2Z)-5-Hydroxydec-2-enedioyl-CoA into (2Z)-5-Hydroxydec-2-enedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (2Z)-5-Hydroxydec-2-enedioylcarnitine is converted back to (2Z)-5-Hydroxydec-2-enedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (2Z)-5-Hydroxydec-2-enedioyl-CoA occurs in four steps. First, since (2Z)-5-Hydroxydec-2-enedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (2Z)-5-Hydroxydec-2-enedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase ca...

   

5-Hydroxydec-3-enedioyl-CoA

10-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-5-hydroxy-10-oxodec-3-enoic acid

C31H50N7O20P3S (965.2044)


5-hydroxydec-3-enedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 5-hydroxydec-3-enedioic acid thioester of coenzyme A. 5-hydroxydec-3-enedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 5-hydroxydec-3-enedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 5-hydroxydec-3-enedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 5-Hydroxydec-3-enedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 5-Hydroxydec-3-enedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 5-Hydroxydec-3-enedioyl-CoA into 5-Hydroxydec-3-enedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 5-Hydroxydec-3-enedioylcarnitine is converted back to 5-Hydroxydec-3-enedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 5-Hydroxydec-3-enedioyl-CoA occurs in four steps. First, since 5-Hydroxydec-3-enedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 5-Hydroxydec-3-enedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to m...

   

6-Hydroxydec-4-enedioyl-CoA

6-Hydroxydec-4-enedioyl-CoA

C31H50N7O20P3S (965.2044)


   

6-Hydroxydec-3-enedioyl-CoA

6-Hydroxydec-3-enedioyl-CoA

C31H50N7O20P3S (965.2044)


   

6-Hydroxydec-2-enedioyl-CoA

6-Hydroxydec-2-enedioyl-CoA

C31H50N7O20P3S (965.2044)


   

5-Hydroxydec-4-enedioyl-CoA

5-Hydroxydec-4-enedioyl-CoA

C31H50N7O20P3S (965.2044)


   

5-Hydroxydec-5-enedioyl-CoA

5-Hydroxydec-5-enedioyl-CoA

C31H50N7O20P3S (965.2044)


   

5-Hydroxydec-3-enedioyl-CoA

5-Hydroxydec-3-enedioyl-CoA

C31H50N7O20P3S (965.2044)


   

(2Z)-5-Hydroxydec-2-enedioyl-CoA

(2Z)-5-Hydroxydec-2-enedioyl-CoA

C31H50N7O20P3S (965.2044)


   

3-oxodecanedioyl-CoA

3-oxodecanedioyl-CoA

C31H50N7O20P3S (965.2044)


An acyl-CoA resulting from the formal condensation of the thiol group of coenzyme A with the 1-carboxy group of 3-oxodecanedioic acid.

   

4-Oxosebacic Acid-CoA; (Acyl-CoA); [M+H]+

4-Oxosebacic Acid-CoA; (Acyl-CoA); [M+H]+

C31H50N7O20P3S (965.2044)