Chemical Formula: C29H45NO4
Chemical Formula C29H45NO4
Found 14 metabolite its formula value is C29H45NO4
Cervonyl carnitine
C29H45NO4 (471.33484100000004)
Cervonyl carnitine is an acylcarnitine. Numerous disorders have been described that lead to disturbances in energy production and in intermediary metabolism in the organism which are characterized by the production and excretion of unusual acylcarnitines. A mutation in the gene coding for carnitine-acylcarnitine translocase or the OCTN2 transporter aetiologically causes a carnitine deficiency that results in poor intestinal absorption of dietary L-carnitine, its impaired reabsorption by the kidney and, consequently, in increased urinary loss of L-carnitine. Determination of the qualitative pattern of acylcarnitines can be of diagnostic and therapeutic importance. The betaine structure of carnitine requires special analytical procedures for recording. The ionic nature of L-carnitine causes a high water solubility which decreases with increasing chain length of the ester group in the acylcarnitines. Therefore, the distribution of L-carnitine and acylcarnitines in various organs is defined by their function and their physico-chemical properties as well. High performance liquid chromatography (HPLC) permits screening for free and total carnitine, as well as complete quantitative acylcarnitine determination, including the long-chain acylcarnitine profile. (PMID: 17508264, Monatshefte fuer Chemie (2005), 136(8), 1279-1291., Int J Mass Spectrom. 1999;188:39-52.) [HMDB] Cervonyl carnitine is an acylcarnitine. Numerous disorders have been described that lead to disturbances in energy production and in intermediary metabolism in the organism which are characterized by the production and excretion of unusual acylcarnitines. A mutation in the gene coding for carnitine-acylcarnitine translocase or the OCTN2 transporter aetiologically causes a carnitine deficiency that results in poor intestinal absorption of dietary L-carnitine, its impaired reabsorption by the kidney and, consequently, in increased urinary loss of L-carnitine. Determination of the qualitative pattern of acylcarnitines can be of diagnostic and therapeutic importance. The betaine structure of carnitine requires special analytical procedures for recording. The ionic nature of L-carnitine causes a high water solubility which decreases with increasing chain length of the ester group in the acylcarnitines. Therefore, the distribution of L-carnitine and acylcarnitines in various organs is defined by their function and their physico-chemical properties as well. High performance liquid chromatography (HPLC) permits screening for free and total carnitine, as well as complete quantitative acylcarnitine determination, including the long-chain acylcarnitine profile. (PMID: 17508264, Monatshefte fuer Chemie (2005), 136(8), 1279-1291., Int J Mass Spectrom. 1999;188:39-52.).
(4Z,7Z,10Z,13Z,16Z,19Z)-Docosa-4,7,10,13,16,19-hexaenoylcarnitine
C29H45NO4 (471.33484100000004)
(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Sipeimine, 3-Ac
C29H45NO4 (471.33484100000004)
Origin: Plant; SubCategory_DNP: Steroidal alkaloids, Cevanine alkaloids
CAR 22:6
C29H45NO4 (471.33484100000004)
2-methyl-6-(13-oxotetradecyl)piperidin-3-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate
C29H45NO4 (471.33484100000004)
2,3-dimethoxy-6-(10-methoxy-3,5,7,9,11,13-hexamethyltetradeca-2,5,7,11-tetraen-1-yl)-5-methylpyridin-4-ol
C29H45NO4 (471.33484100000004)
2-methyl-6-(13-oxotetradecyl)piperidin-3-yl 3-(4-hydroxyphenyl)prop-2-enoate
C29H45NO4 (471.33484100000004)
2,3-dimethoxy-6-[(2e,5e,7e,9s,10s,11e)-10-methoxy-3,5,7,9,11,13-hexamethyltetradeca-2,5,7,11-tetraen-1-yl]-5-methylpyridin-4-ol
C29H45NO4 (471.33484100000004)