Chemical Formula: C26H39NO4
Chemical Formula C26H39NO4
Found 22 metabolite its formula value is C26H39NO4
N-Docosahexaenoyl Threonine
C26H39NO4 (429.28789340000003)
N-docosahexaenoyl threonine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Docosahexaenoyl amide of Threonine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Docosahexaenoyl Threonine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Docosahexaenoyl Threonine is therefore classified as a very long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
adaprolol
C26H39NO4 (429.28789340000003)
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist
Hippolide B
C26H39NO4 (429.28789340000003)
A natural product found in Hippospongia lachne.
NA-Thr 22:6(4Z,7Z,10Z,13Z,16Z,19Z)
C26H39NO4 (429.28789340000003)
3-{[2-(2,3-dimethyloxiran-2-yl)-3,8-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl](hydroxy)methylidene}-1-methyl-5-(sec-butyl)pyrrolidine-2,4-dione
C26H39NO4 (429.28789340000003)
n-(3-{1,14-dimethyl-6-methylidene-8,16,18-trioxapentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicos-10-en-17-yl}propyl)ethanimidic acid
C26H39NO4 (429.28789340000003)
2,3-dimethoxy-6-[(2e,5e,7e,9s,10s,11e)-10-methoxy-3,7,9,11-tetramethyltrideca-2,5,7,11-tetraen-1-yl]-5-methylpyridin-4-ol
C26H39NO4 (429.28789340000003)
2,3-dimethoxy-6-(10-methoxy-3,7,9,11-tetramethyltrideca-2,5,7,11-tetraen-1-yl)-5-methylpyridin-4-ol
C26H39NO4 (429.28789340000003)
(3z,5r)-3-{[(1s,2r,4ar,8s,8ar)-2-[(2s,3s)-2,3-dimethyloxiran-2-yl]-3,8-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl](hydroxy)methylidene}-1-methyl-5-(sec-butyl)pyrrolidine-2,4-dione
C26H39NO4 (429.28789340000003)
(3z)-3-{[2-(2,3-dimethyloxiran-2-yl)-6,8-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl](hydroxy)methylidene}-1-methyl-5-(sec-butyl)pyrrolidine-2,4-dione
C26H39NO4 (429.28789340000003)
2-[(2e,5e,7e,9s,10r,11e)-10-hydroxy-3,5,7,9,11-pentamethyltrideca-2,5,7,11-tetraen-1-yl]-5,6-dimethoxy-3-methylpyridin-4-ol
C26H39NO4 (429.28789340000003)
2-(10-hydroxy-3,5,7,9,11-pentamethyltrideca-2,5,7,11-tetraen-1-yl)-5,6-dimethoxy-3-methylpyridin-4-ol
C26H39NO4 (429.28789340000003)
3-{[2-(2,3-dimethyloxiran-2-yl)-6,8-dimethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl](hydroxy)methylidene}-1-methyl-5-(sec-butyl)pyrrolidine-2,4-dione
C26H39NO4 (429.28789340000003)
(3s)-5-hydroxy-3-[(2r,6s)-6-methoxy-5-[(3e,7e)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,6-dihydro-2h-pyran-2-yl]-3,4-dihydropyrrol-2-one
C26H39NO4 (429.28789340000003)